
BP/28
CCN-CERT

Recommendations on
Secure Development

JANUARY 2023

GOOD PRACTICE REPORT

Edited by:

Paseo de la Castellana 109, 28046 Madrid

© National Cryptology Centre, 2023

Date of issue: January de 2023

LIMITATION OF LIABILITY

This document is provided in accordance with the terms contained herein, expressly rejecting

any type of implicit guarantee that may be related to it. Under no circumstances can the National

Cryptologic Centre be held responsible for direct, indirect, fortuitous or extraordinary damage derived

from the use of the information and software indicated, even when warned of such a possibility.

LEGAL NOTICE

The reproduction of all or part of this document by any means or process, including reprography

and computer processing, and the distribution of copies by public rental or loan, is strictly prohibited

without the written authorisation of the National Cryptologic Centre, subject to the penalties

established by law.

General State Administration Publications Catalogue
https://cpage.mpr.gob.es

3CCN-CERT BP/28: Recommendations on Secure Development

	 1. Introduction	 	 5

	 2. Secure	architecture	 7
	 	 	 2.1. Potential	risks	 7
	 	 	 2.2. Security	recommendations	 8
	 	 	 2.3. References	 9

	 3. Authentication	 	 10
	 	 	 3.1. Types	of	authentication	 10
	 	 	 3.2. Authentication	methods	 11
	 	 	 3.3. Potential	risks	 16
	 	 	 3.4. Security	recommendations	 18
	 	 	 3.5. Example	 20
	 	 	 3.6. References	 20

	 4. Authorisation	 	 21
	 	 	 4.1. Potential	risks	 21
	 	 	 4.2. Security	recommendations	 23
	 	 	 4.4. References	 24
	 	 	 4.3. Example	 24

	 5. Session	management	 25
	 	 	 5.1. Security	aspects	 26
	 	 	 5.2. Potential	risks	 29
	 	 	 5.3. Security	recommendations	 30
	 	 	 5.4. Example	 31
	 	 	 5.5. References	 32

	 6. Validation of input and output data 33
	 	 	 6.1. Validation	techniques	 34
	 	 	 6.2. Flow	chart	 36
	 	 	 6.3. Potential	risks	 37
	 	 	 6.4. Security	recommendations	 38
	 	 	 6.5. Example	 40
	 	 	 6.6. References	 40

	 7. Error	management	 41
	 	 	 7.1. Confidentiality	of	messages	 41
	 	 	 7.2. Uncontrolled	errors	 42
	 	 	 7.3. Security	recommendations	 43
	 	 	 7.4. Example	 44
	 	 	 7.5. References	 44

	 8. Secure	registration	 45
	 	 	 8.1. Potential	risks	 46
	 	 	 8.2. Security	recommendations	 46
	 	 	 8.4. References	 	47
	 	 	 8.3. Example	 47

Index

4 CCN-CERT BP/28: Recommendations on Secure Development

	 9. Cryptography	 	 48
	 	 	 9.1. Use	of	encryption	 48
	 	 	 9.2. Potential	risks	 50
	 	 	 9.3. Recomendaciones	de	seguridad	 51
	 	 	 9.4. Example	 52
	 	 	 9.5. References	 52

10. Secure	file	management	 53
	 	 	 10.1. Potential	risks	 53
	 	 	 10.2. Security	recommendations	 54
	 	 	 10.3. Example	 55
	 	 	 10.4. References	 55

11. Transaction	security	 56
	 	 	 11.1. Potential	risks	 57
	 	 	 11.2. Security	recommendations	 57
	 	 	 11.3. Example	 58
	 	 	 11.4. References	 58

12. Communications	security	 59
	 	 	 12.1. Potential	risks	 59
	 	 	 12.2. Security	recommendations	 60

13. Data	protection	 	 61
	 	 	 13.1. Potential	risks	 62
	 	 	 13.2. Security	recommendations	 62
	 	 	 13.3. Example	 63
	 	 	 13.4. References	 	64

14. Python:	Complementary	indications	 65
	 	 	 14.1. Architecture	 65
	 	 	 14.2. Authentication	 67
	 	 	 14.3. Session	management	 68
	 	 	 14.4. Validation	of	input	parameters	 69

15. Checklist	security	controls	 74

16. Security	vulnerabilities	and	controls	 85

17. Security	measures	and	security	controls	 86

18. Glossary	 	 	 88

19. References	 	 89

annex	a. Basic cheatsheet 91

annex	b. Advanced cheatsheet 93

Index

5

1. Introduction

Objetives

This document is intended to help development teams understand
the most common security controls that should be applied during the
software development lifecycle. The secure development guides pro-
vide developers with a set of recommendations to follow that enable
them	to	build	applications	with	security	techniques.

Establishing security measures during application development in the
design and coding phases not only lays the foundation for security
against the most common vulnerabilities, but also reduces future
costs, as fixing problems at a later stage is more costly.

Scope

Regardless of the development methodology used, the definition of
security controls should start at the design stage or even before, and
continue throughout the application lifecycle to ensure that the appli-
cation will continue to have the relevant security measures in case of
changes to the initial arrangement due to business needs.

Building secure software involves activities on many levels, not only
to comply with internal security policies, but also to follow the law and
external	regulations	such	as	HIPAA,	PCI	or	GDPR.	The	resulting	soft-
ware	must	implement	security	features	that	meet	these	requirements.

In addition, during the threat modelling process of a project, when
properly	combined	with	security	requirements	engineering	and	secure	
design principles, it allows the development team to identify the secu-
rity features that are necessary to ensure the integrity, confidentiality
and availability of the data involved in the project.

CCN-CERT BP/28: Recommendations on Secure Development

The secure development
guides provide
developers with a set
of recommendations to
follow that enable them
to build applications with
security	techniques

6

The guide has been classified as follows:

 Security	recommendations	for	the	following	aspects:

 ◗	 Architecture

 ◗	 Authorisation

 ◗	 Authentication

 ◗ Session management

 ◗	 Validation of input and output parameters

 ◗ Error handling

 ◗ Secure registration

 ◗ Cryptography

 ◗ Secure file management

 ◗ Transaction security

 ◗ Communications security

 ◗ Data protection

 Supplementary	indications	for	Python

 Security	Controls	Checklist

 Security	Vulnerabilities	and	Controls

 ENS	Security	Measures	and	Security	Controls

 Annexes at the end of the document with Basic and Advanced
Security	Controls

1. Introducción

CCN-CERT BP/28: Recommendations on Secure Development

7

2. Architecture	safe

A	solid	secure	architecture	is	fundamental	to	the	construction	of	the	
software as it is the foundation on which the software is built and
developed.

To achieve this purpose, it is necessary to identify the components
used,	ensure	that	there	are	no	known	vulnerabilities	and	that	they	are	
properly updated.

The	architecture	must	always	be	designed	with	security	requirements	
in mind in order to avoid or limit potential security threats.

2.1. 
Potential
risks

Potential threats to an application can be multiple and of high proba-
bility when:

 Components	with	known	vulnerabilities	are	used.

 Outdated, obsolete or unsupported components are used.

 Unidentified	components	are	used.

 Expendable	ports	are	kept	open.

CCN-CERT BP/28: Recommendations on Secure Development

8

2.2. Security	recommendations

 Identify	all	the	components	of	the	architecture.

 ◗ Components that have not been correctly identified are po-
tential	security	risks.

 Conduct a review of the basing of each hardware device
from	a	security	point	of	view:

 ◗ Review of configurations. Ensure that the configurations are
the most secure: no debugging options enabled, no default
users and passwords, etc.

 ◗ Check	ports.	Make	sure	that	only	those	communication	ports	
that are strictly necessary are open.

 ◗ Status of the latest system update.

 ◗ Identification of all the system components: Libraries, Mod-
ules, Frameworks, Services, etc.

 ◗	 	For each system component, perform the same baseline re-
view of configurations and update status.

 From the result of the previous review, obtain a report of the
components in which there are vulnerabilities detected for
which	there	is	currently	no	security	patch	and	analyse	their	
level	 of	 risk	within	 the	 application.	 It	 could	 be	 that	 certain	
vulnerabilities	detected	do	not	pose	a	real	risk	to	the	applica-
tion or do not have a relevant impact.

 For	 those	vulnerabilities	 that	pose	a	 real	 risk,	 keep	a	close	
watch	on	vulnerable	components	so	that	they	are	updated	as	
soon as possible.

 Conduct	 a	 study	 of	 how	 the	 security	 problems	 created	 by	
these	risk	vulnerabilities	could	be	avoided	or	mitigated	by	al-
ternative	security	systems.

 Improve	logical	perimeter	security	by	installing	firewalls,	IDS	
or	similar	devices,	or	by	segmenting	the	network.

Ensure that the
configurations	are	
the most secure: no
debugging options
enabled, no default users
and passwords, etc

2. Architecture safe

CCN-CERT BP/28: Recommendations on Secure Development

9

 Ensure	that	data	is	protected	by	authorisation	mechanisms	
between	environments	through	physical	or	logical	segrega-
tion	and	by	backups	to	ensure	availability.

 Use the most recent version of the programming language.

 Use	a	Virtual	Environment	as	a	project	workspace	if	applica-
ble according to the programming language.

 Correct	 import	of	packages	according	 to	programming	 lan-
guage.	 Installed	and	 imported	packages,	 thoroughly	check-
ing	the	security	of	the	packages	to	be	installed.

 Disable all debugging options in Production that prevent in-
formation	leakage	in	the	detailed	error	messages.

 Use	tools	in	the	IDE	that	perform	basic	semantic	and	security	
analysis.

2.3. References Design Patterns:
https://refactoring.guru/es/design-patterns [1]

 OWASP. Design Secure Web Applications:
https://owasp.org/www-pdf-archive/APAC13_Ashish_Rao.pdf [2]

 Areas of Homeland Security: Critical Infrastructure Protection:
file:///Users/lagor/Downloads/BOE-400_Ambitos_de_la_Seguridad_Nacional_
Proteccion_de_Infraestructuras_Criticas.pdf [3]

2. Architecture safe

CCN-CERT BP/28: Recommendations on Secure Development

10

3. Authentication

Authentication	is	the	verification	of	the	identity	of	a	user	or	device	in	
order	to	grant	access	to	its	resources	or	information.	This	task	usual-
ly	 requires	 the	presentation	of	credentials,	such	as	a	username	and	
password, to verify that the user is indeed who he/she claims to be.

It is the main area of security control, so the type and method of au-
thentication must be part of the design.

3.1.	Types	of	authentication

 Network	authentication: the identity of a user or device is ver-
ified	 through	 the	use	of	network	credentials,	such	as	a	user-
name and password, or through the verification of a digital
certificate.

 Password-based authentication: the user provides a user-
name and password to access a system or resource.

 Token-based authentication: the user receives a physical or
digital token that must be provided in order to access a system
or resource.

 Two-factor authentication:	the	user	is	required	to	provide	two	
(2) forms of verification of their identity, such as a password
and a code sent to their mobile phone.

 Biometric authentication: physical characteristics of the user,
such as their fingerprint or voice, are used to verify their identity.

CCN-CERT BP/28: Recommendations on Secure Development

Authentication is the
verification	of	the	
identity	of	a	user	or	
device in order to grant
access to its resources
or information

11

3.2. Authentication	methods

3.2.1. Basic	authentication

Basic authentication is a network	authentication method. In this au-
thentication method, the user provides a username and password in
clear text form (base64) and is therefore considered an insecure form
of	authentication.	Other	methods,	such	as	two-factor	authentication	or	
authentication	based	on	digital	certificates,	are	recommended.	

RISKS

◗ MitM	(Man-in-the-Middle)	attack:	authentication information
is sent in clear text form, which means that it could be easily
intercepted and read by anyone with access to the decrypted
information	on	the	network.

◗ Key	reuse: If the same password is used for multiple sites or
systems,	an	attacker	who	obtains	the	password	through	basic	
authentication can use it to access other protected resources.

◗ Brute-force	or	dictionary	attack: This type of authentication
does	not	 provide	adequate	protection	against	 these	attacks,	
where	an	attacker	attempts	to	guess	passwords	through	the	
use of automated programs.

◗ Weak	authentication: does not allow a user to prove his identi-
ty in a secure and reliable way, preventing the implementation
of stronger security measures, such as two-factor authentica-
tion or authentication based on digital certificates.

3.2.2. Authentication	via	forms

Forms-based	authentication	 is	a	 type	of	password-based authenti-
cation for a website. In this authentication method, the user provides
his or her username and password through a form on a web page. The
web server verifies the authentication information received and if it is
correct, it will allow the user access.

Forms	authentication	can	be	a	secure	form	of	authentication	if	appro-
priate measures are used to protect the authentication information,

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

12

such as encryption of information in transit and the use of strong pass-
words.	However,	it	also	presents	some	risks,	such	as	the	possibility	of	
an	attacker	obtaining	the	authentication	information	through	social	en-
gineering	techniques	or	through	the	use	of	brute	force	software.

RISKS

◗ MitM	(Man-in-the-Middle)	attack: authentication information
could be intercepted and used to access the protected re-
source	 if	 appropriate	 techniques	are	not	 used	 to	protect	 the	
information such as encryption of communications or the use
of strong passwords.

◗ Key	reuse: If the same password is used for multiple sites or
systems,	an	attacker	who	obtains	the	password	through	forms	
authentication can use it to access other protected resources.

◗ Brute-force	or	dictionary	attack: also, does not provide ade-
quate	protection	against	these	attacks,	where	an	attacker	at-
tempts to guess passwords using automated programs.

◗ Weak	authentication: does not allow a user to prove his iden-
tity in a secure and reliable way, preventing the implementa-
tion of stronger security measures, such as two-factor
authentication or authentication based on digital certificates.

3.2.3. Implicit	authentication

The user does not have to explicitly provide credentials to access a
protected resource. Instead, other forms of identification are used,
such as the user's IP address, information stored in a cookie or a to-
ken. It is a type of network or token-based authentication depending
on the way chosen to provide this identification.

The most secure way to use this method is to use a cryptographic
hash based on it as a password to obtain a token that is sufficiently
strong	and	long	to	make	it	useless	to	use	a	brute	force	attack	against	
it. The server compares the token received with the token it has calcu-
lated	and	stored	for	the	user	requiring	access.	

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

13

RISKS

◗ Unauthorised access: If information such as the user's IP ad-
dress is used to determine whether the user has access to a
protected	 resource,	 an	 attacker	 can	 spoof	 this	 information	
and gain unauthorised access to the resource.

◗ Unauthorised access: If cookies are used to store authentica-
tion	information,	an	attacker	can	gain	access	to	the	cookie and
use it to access the protected resource.

◗ Brute	force	or	dictionary	attack: where sufficiently strong en-
cryption algorithms, such as MD5, have not been used, it could
be	vulnerable	to	such	attacks.

◗ Weak	authentication: does not allow a user to prove his identi-
ty in a secure and reliable way, preventing the implementation
of stronger security measures, such as two-factor authentica-
tion or authentication based on digital certificates.

3.2.4. Autenticación	de	cliente	HTTP

A	type	of	network-based	authentication	in	which	a	cryptographic	key	
pair,	a	public	key	and	a	private	key,	 is	used	to	verify	the	 identity	of	a	
user	or	device.	The	public	key	is	used	to	encrypt	the	information	and	
the	private	key	 is	used	to	decrypt	 it.	The	user	sends	a	digital	certifi-
cate	 containing	 his	 public	 key	 for	 the	 server	 to	 encrypt	 the	 content	
and	then	uses	his	private	key	to	decrypt	it.

Authentication	by	public	key	certificate	is	considered	one	of	the	most	
secure forms of authentication, as it allows a user to prove his identity
in a reliable and secure way. This is provided that the encryption algo-
rithm is sufficiently strong for this authentication method to be truly
secure. Typically, this method is used for HTTPS (HTTP over SSL/
TLS) communications. The only negative to this method is that it can
be more complicated and costly to implement than other forms of
authentication.

The	client's	public	key	certificate	is	issued	by	a	trusted	entity,	such	as	
a	Certification	Authority	(CA),	which	also	provides	an	identification	for	
the bearer.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Authentication	by	
public	key	certificate	
is considered one of
the most secure forms
of authentication, as it
allows a user to prove his
identity	in	a	reliable	and	
secure	way

14

RISKS

◗ Unauthorised access:	If	an	attacker	manages	to	obtain	a	user's	
private	key,	he	can	use	 it	 to	gain	unauthorised	access	 to	 that	
user's protected resources.

 If	a	fake	certificate	is	issued	with	a	fake	public	key,	it	could	be	
used to gain unauthorised access to protected resources.

◗ MitM	attack: by intercepting a certificate in transit, it could be
used to access protected resources in an unauthorised manner.

◗ Tampering with an SSL certificate: the implementation of cer-
tificates	 that	 have	 not	 been	 verified	 by	 a	 trusted	 CA	 or	 self-
signed certificates that could provide a false sense of security

3.2.5. Windows	Authentication

A	type	of	password-based authentication in which the identity of a
user attempting to access a computer or resource protected by MS
Windows is verified. It is done by using a username and password,
which are verified against information stored on an authentication
server or in a local directory. MS Windows uses two (2) authentication
protocols Kerberos and NTLM.

Kerberos	uses	a	centralised	authentication	server	and	encrypted	keys	
to securely verify the identity of users and NTLM uses the computer's
local file system.

In	 a	Windows	NT	domain	 or	 Active	Directory	 environment,	 user	 au-
thentication is performed by using a centralised authentication serv-
er. When a user attempts to log in, his or her computer sends an
access	 request	 to	 the	 authentication	 server	 and	 verifies	 the	 user's	
identity	using	the	credentials	stored	in	the	Active	Directory.	If	the	cre-
dentials	 are	 valid,	 the	 authentication	 server	 issues	 an	 access	 ticket	
allowing the user access.

This authentication method is most suitable in corporate environ-
ments	 (Intranet)	 where	 centralised	 control	 over	 access	 to	 network	
resources	 is	 required.	 In	 addition,	 by	 using	 an	Active	Directory,	 it	 is	
possible to centrally manage user accounts and their access permis-
sions	to	different	network	resources.

There	are	quite	a	few	security	risks	with	this	authentication	method,	
many of them dependent on the security policies that have been set
by the MS Windows server administrator.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

User authentication
is	performed	by	
using a centralised
authentication server

15

RISKS

◗ Dictionary	attacks: these are based on guessing passwords by
using programs that attempt common combinations of letters
and numbers.

◗ Brute-force	 attacks: attempt to guess a user's password by
using programs that generate and test combinations of char-
acters until the correct one is found.

◗ MitM	attacks: Intervene the communication between the user
and the authentication server in order to obtain the user's cre-
dentials.

◗ Replay	attacks: capture and reuse valid login	tickets	issued	by	
the	 authentication	 server,	 which	 would	 allow	 an	 attacker	 to	
gain	access	without	having	to	know	the	user's	password.	MS	
Windows operating systems include security measures that
prevent	the	reuse	of	access	tickets.

◗ Phishing	attacks:	these	are	based	on	sending	fake	emails	that	
appear to come from a trusted source with messages that use
social	engineering	techniques	 in	order	 to	obtain	a	user's	cre-
dentials.

◗ Software vulnerabilities: MS Windows operating systems and
other software used for authentication contain vulnerabilities
that	can	be	identified	and	exploited	by	attackers.

◗ Human	 security	 failures:	 mistakes	 or	 oversights	 by	 users,	
such	as	using	weak	passwords,	sharing	their	credentials	or	al-
lowing them to be discovered.

3.2.6. Passport	Authentication

Microsoft Passport is an authentication service used by some Win-
dows systems and Microsoft applications to verify the identity of us-
ers.	This	service	uses	a	Microsoft	account,	such	as	an	Outlook	account	
or	a	Skype	account,	to	verify	the	user's	identity.

It is based on the use of one-time credentials, which are sent to the
authentication server instead of the user's password. This prevents
attackers	from	guessing	the	user's	password	by	using	brute	force	or	
dictionary	techniques.	In	addition,	it	uses	encryption	to	protect	against	
the	risk	of	MitM	attacks.

Starting with MS Windows 10, the Passport system has evolved using
two-factor	authentication.	One	is	device	registration	and	the	other	is	
biometric authentication using a gesture (Windows Hello) or a PIN.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Microsoft Passport is an
authentication service
used	by	some	Windows	
systems	and	Microsoft	
applications	to	verify	the	
identity	of	users

16

RISKS

◗ Dependence on a Microsoft account: To use Microsoft Pass-
port, you must have a Microsoft account.

◗ Software vulnerabilities: Microsoft Passport may have vul-
nerabilities	that	could	be	exploited	by	attackers.

◗ Phishing	and	human	error	risks: the same problems as indi-
cated for MS Windows authentication.

3.3. Potential	risks

In	summary,	the	most	common	threats	and	risks	due	to	lack	of	secu-
rity authentication controls in applications or insufficiently secure
authentication methods are:

 Brute-force	attacks: using programmes that generate and test
combinations of characters to guess users' passwords and
gain	access	to	their	accounts.	If	passwords	are	weak	or	easy	to	
guess,	these	attacks	could	be	successful.

 Dictionary	attacks: using programs that attempt to guess pass-
words by using lists of words most commonly used as pass-
words using variations with letters and numbers. If the passwords
are	weak	or	typical,	these	attacks	may	succeed	in	less	time.

 MitM	attacks: if communications are intercepted, credentials,
token	or	access	ticket	could	be	obtained	(replay	attack).	 If,	 in	
addition, communications are insecure or clear text forms of
authentication	are	used,	attacks	could	be	more	successful.

 Replay	attacks:	once	an	attacker	has	obtained	an	access	tick-
et, it could be reused to gain access.

 Software vulnerabilities: operating systems and applications
used in authentication may have vulnerabilities that can be ex-
ploited	by	attackers.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

17

 User enumeration:	the	attacker	could	find	registered	users	on	
the system by proving identities and analysing server respons-
es, either by response time or error messages.

 Spoofing: obtaining credentials by impersonating the authenti-
cation	 server,	 making	 the	 victim	 believe	 that	 they	 are	 in	 the	
right place to enter their credentials to gain access. The service
could even forward the information to the real server and redi-
rect it authenticated so that the victim does not notice the de-
ception.

 Authentication bypass:	includes	techniques	that	allow	authen-
tication	 by	 bypassing	 the	 associated	 security	measures.	 For	
example, access to a user account by code injection.

 Identity	 theft:	 this	 is	 when	 the	 attacker	 obtains	 the	 victim's	
identity and uses it to perform some actions. This can be done,
for example, by stealing a session cookie from the victim.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

18

3.4. Security	recommendations

 Ensure that passwords are not stored in a readable format, so
that if the system or resource containing the passwords is
compromised,	the	malicious	user	is	still	unable	to	use	them.	A	
good method could be the use of functions that guarantee the
irreversibility of the operation, such as the use of strong hash
functions.

 Ensure	that	each	page	of	the	application	has	a	logout	link,	that	
the session expires when the user logs out, and that the session
expires after a reasonable period of non-activity.

 Never expose credentials in the URL.

 When	using	forms,	use	POST	methods	for	sending	information	
between the client and the server.

 Using multi-factor authentication to increase security for opera-
tions with access to sensitive resources or publicly accessible
applications.

 Use two-factor authentication to the user for critical functions in
the application, such as changing passwords or accessing par-
ticularly sensitive resources.

 Implement	account	lockout	after	three	(3)	failed	login attempts
and	a	way	to	contact	the	administrator	to	unlock	the	account.

 Implement	CAPTCHA	to	mitigate	brute	force	attacks	on	appli-
cations exposed on the internet.

 Avoid	enumeration	of	users,	providing	generic	error	messages	
in case of authentication failure, such as "The user and/or pass-
word provided are not correct".

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

19

 Avoid	enumeration	of	users	by	providing	different	response	times	
in	case	of	non-existent	user	or	incorrect	password.	It	is	required	
to include random timeouts in both cases so that it is impossible
to recognise the cases by measuring response times.

 Avoid	enumeration	of	users	in	password	recovery	procedures	
that	require	entering	the	username.

 Disable the "auto-complete" attribute of the password field in
the application, as it is enabled by default.

 Enforce	 password	 complexity	 requirements	 set	 by	 policy	 or	
regulation,	 and	 ensure	 that	 these	 requirements	 follow	 mini-
mum security rules such as:

 ◗ It should be a minimum of eight (8) characters and a sensi-
ble maximum.

 ◗ It must contain at least three (3) of the following characters:

 •	 	A	capital letter.

 •	 	A	lower case letter.

 •	 	A	number.

 •	 	A	special character.

 Not to persistently store the authentication cookie on the cus-
tomer's computer, and not to use it for other purposes such as
personalisation.

 Ensure that the session is different each time a user has suc-
cessfully logged in to the application.

 Record all successful and unsuccessful authentication at-
tempts	without	exposing	the	key	used.

 Recording malicious access attempts in a specific security log:
Detection of multiple failed authentication attempts, detection
of	injection	attempts,	such	as	SQL	or	LDAP,	detection	of	multi-
ple users for the same IPs, etc.

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

Enforce password
complexity	requirements	
set	by	policy	or	
regulation, and ensure
that	these	requirements	
follow	minimum	security	
rules

20

3.5. Example

This example creates a hash and salt for a password by calling getSalt-
edHash(String password). This method will return a string containing
the salt and hash separated by a | (pipe).

To check if a given password is correct, call check(String password,
String stored), passing the password being checked along with the
stored hash/salt. This method will return true if the password is correct.

It is important to use SecureRandom to
generate the salt in a secure, random and
unique way for each password. A suffi-
ciently high number of iterations is used
for the hash calculation (10000 in this
example) to increase security and make
it more difficult for brute force attackers
to calculate the hash of a given pass-
word. It is also important to use a secure
hash function such as SHA-512, which is
resistant to collision attacks and is rela-
tively fast to compute.

3.6. References Java Secure Authentication:
https://docs.oracle.com/javaee/5/tutorial/doc/bncbe.html#bncbn [4]

 Python: Library to implement OTP:
https://pypi.org/project/pyotp/ [5]

import java.security.MessageDigest;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Base64;

public class SecureAuth {

 private static final int ITERATION_COUNT = 10000;
 private static final int KEY_LENGTH = 512;

 public static String getSaltedHash(String password) throws IllegalStateException {
  byte[] salt = SecureRandom.getInstanceStrong().generateSeed(KEY_LENGTH / 8);
  return Base64.getEncoder().encodeToString(salt) + "|" + hash(password, salt);
 }

 public static boolean check(String password, String stored) throws IllegalStateException{
  String[] saltAndPass = stored.split("\\|");
  if (saltAndPass.length != 2) {
   throw new IllegalStateException(“Use '<salt>|<hash>'”);
  }
  byte[] salt = Base64.getDecoder().decode(saltAndPass[0]);
  String hashOfInput = hash(password, salt);
  return hashOfInput.equals(saltAndPass[1]);
 }

 private static String hash(String password, byte[] salt) throws IllegalStateException {
  MessageDigest md = MessageDigest.getInstance("SHA-512");
  md.update(salt);
  byte[] hashedPassword = md.digest(password.getBytes("UTF-8"));
  int iterations = ITERATION_COUNT;
  while (iterations-- > 0) {
   hashedPassword = md.update(hashedPassword);
  }
  hashedPassword = md.digest(hashedPassword);
  return Base64.getEncoder().encodeToString(hashedPassword);
 }
}

CCN-CERT BP/28: Recommendations on Secure Development

3. Authentication

21

4. Authorisation

Authorisation	is	responsible	for	determining	what	actions	a	user	or	sys-
tem	is	allowed	to	perform,	therefore,	authentication	is	a	prerequisite	for	
authorisation, as it is necessary to verify the identity of a user or system
before determining what actions they are allowed to perform.

It is the second security control after authentication and is closely
linked	to	authorisation	over	the	business	functions	of	the	application.

4.1.	Potential	risks

There are several vulnerabilities that can arise in the absence of ade-
quate	security	controls	when	implementing	authorisation.	The	follow-
ing	are	some	of	the	main	and	common	risks	identified	in	applications	
due	to	lack	of	security	controls	on	authorisation.

 Unauthorised access: if authorisation is not properly imple-
mented, it may result in unauthorised users having access to
resources and operations to which they should not have per-
mission.

 Vertical privilege escalation: one user can access the func-
tionality of another user with higher privileges.

 Horizontal privilege escalation: a user can access the func-
tionality of another user with the same level of access.

CCN-CERT BP/28: Recommendations on Secure Development

22

 Disclosure of sensitive information: an application gives more
information than necessary to the user and could be used by
an	attacker	for	malicious	purposes.

 Privacy	breach:	if	the	attacker	ends	up	having	access	to	other	
users' privacy-related data.

 Identity	 theft:	 this	 is	 when	 the	 attacker	 obtains	 the	 victim's	
identity and uses it to perform some actions.

 Data theft:	 is	 when	 an	 attacker	 illegitimately	 obtains	 data,	
whether confidential or not.

 Service	availability: unauthorised access to critical elements
of	the	application	could	allow	an	attacker	to	disrupt	or	damage	
the service.

 Data manipulation:	an	attacker	is	able	to	intercept	and	manip-
ulate the data exchanged between the client and the server.

 Log modification:	when	an	attacker	manages	 to	access	and	
edit application or system logs, compromising the integrity of
log traceability.

 Path traversal:	 the	 attacker	 moves	 through	 the	 server's	 file	
system, beyond the scope in which he is supposed to act and
outside	the	context	that	would	require	authorisation.

 Business logic: if the application was not well designed, it
could happen that, if a user does not follow the normal applica-
tion logic for his business functions, he could encounter unex-
pected behaviour that could be exploited to perform operations
that should not have been allowed.

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

23

4.2. Security	recommendations

 Ensure the implementation of the principle of least privilege:
users have restricted access only to the functions and data
they	really	need	to	perform	their	work	normally.

 	Assign	permissions	and	privileges	 to	application	 roles,	never	
directly to users. Users must have roles and their privileges are
taken	from	these	roles.

 	Check	that	the	access	to	confidential	records	is	protected,	so	
that only authorised objects or data accessible to each user
can be reached (e.g. by protecting against users manipulating
a parameter to view or modify another user's account).

 	Verify	that	browsing	in	the	directory	is	disabled,	unless	deliber-
ately enabled. In addition, applications should not allow the
discovery or disclosure of files or directories, such as Thumbs.
ds,	.DS_Store,	.git	or	.svn	folders.

 Ensure that the access control rules are applied on the server
side.

 	Verify	that	all	the	user	attributes,	data	and	policy	information	
used by access controls cannot be manipulated by end-users
unless specifically authorised.

 	Verify	that	there	is	a	centralised	mechanism	(including	librar-
ies calling external authorisation services) to protect access
to each type of protected resource.

 	Ensure	that	the	application	uses	strong	anti-CSRF	random	tokens
or implements another transaction protection mechanism.

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

Check	that	the	access	
to confidential	records	
is protected, so that
only authorised	objects	
or data accessible
to each	user	can	be	
reached

24

 Record all the operations on sensitive data in a specific secu-
rity log containing at least: the date/time of the operation, the
operation (read, create, delete, update), the name of the data,
the process, function or service that generated the operation,
the user, the role of the user who has the privilege for the oper-
ation, the result of the operation (whether it was successful or
not) and an optional message about the result of the operation
(in case of error).

4.3. Example
Using the Spring Security framework which provides a comprehensive
set of security features, including authentication and role-based au-
thorisation.	 Annotations	 are	 used	 to	 control	 the	 access	 to	 certain	
parts of your application.

In the following example, the list Users method shall only be accessible
to users with the ROLE_ADMIN role.

4.4. References Java. Secure Authorisation:
https://docs.oracle.com/en/java/javase/19/security/java-authentication-and-
authorization-service-jaas1.html [6]

 Python. Simple Authorisation Secure Library:
https://pypi.org/project/python-authorization/ [7]

@PreAuthorize("hasRole('ROLE_ADMIN')")
@GetMapping("/admin/users")
public String listUsers(Model model) {
 // Código para listar a los usuarios
}

CCN-CERT BP/28: Recommendations on Secure Development

4. Authorisation

25

5. Session	
management

A	 session	 is	 an	 active	 connection	 between	 a	 user	 and	 the	 system.	
Session management consists of determining actions on sessions
that serve to ensure the security of authorisation, integrity and privacy
of information between the user and the system. Each authenticated
and authorised access to the system creates a new session in the
system	that	stores	temporary	information	about	the	user's	unique	op-
erations and business logic in the application for the duration of the
user's	access.	Each	session	is	identified	by	a	unique	identifier.

From	this	point	onwards,	the	way	in	which	the	user	identifies	himself	
to the server for all other operations may vary:

 Through cookies: this is the most common and insecure
mechanism.	 A	 unique	 identifier	 is	 generated	 in	 the	 browser	
cookie that is used to identify the user's session on the server
as an active, authenticated session. It is more insecure because
it	 requires	 delegating	 responsibility	 for	 cookie persistence to
more or less secure browser implementations.

 Through tokens:	 this	 is	 equivalent	 to	 the	 previous	 system	
where the token is an access identifier that allows access to
the system after the token has been associated with the corre-
sponding session ID. This token	usually	 travels	 in	 the	request	
headers. It is more secure because it allows access tokens to
be modified from time to time, by means of a token exchange,
without the need to modify the session ID, which would always
be	kept	safe	on	the	server	side.

CCN-CERT BP/28: Recommendations on Secure Development

Session management
consists of determining
actions on sessions
that serve to ensure the
security	of	authorisation,	
integrity	and	privacy	of	
information between the
user	and	the	system

26

5.1. Security	aspects

The	first	basic	aspects	to	consider	in	session	management	security	are:

 Securely	 authenticate	 users	 to	 ensure	 that	 only	 authorised	
persons	have	access	to	the	system.

 Appropriately	authorise	the	user	who	has	obtained	access.

 Encrypt	communications	between	client	and	server	with	a	ro-
bust algorithm.

5.1.1. Client-side	sessione

The client-side session is something that is often given little or no at-
tention and is as important as or more important than the session that
is created on the server. If this session does not exist, the following in-
secure situations, among others, could be created by way of example:

◗	 	A	user	finishes	his	task	in	the	application,	opens	another	tab	and	
switches	to	another	task.	The	server	session	ends,	but	the	client	
does	not	know	that	the	session	has	ended	as	long	as	it	does	not	
generate activity in the forgotten window. This tab could expose
sensitive information that anyone tampering with the device
could see and copy without any activity.

◗	 	A	user	has	to	fill	in	a	form	with	a	lot	of	information	that	takes	time	
to	complete,	and	may	even	be	filled	in	from	queries	to	other	sourc-
es	 that	 require	 their	 attention.	 If	 the	 timeout	 of	 a	 server	 session	
was	30	minutes	due	to	 inactivity,	after	2	hours	filling	 in	the	form,	
the user would press submit and as the session expired, all his
work	 is	 lost	and	he	would	find	himself	with	a	 login on the screen
asking	for	credentials	for		a	new	access.	The	client	had	activity	for	
2 hours, but the server could not perceive it.

In addition, implementing the session concept on the client side would
allow expiry warnings to be displayed some time before they occur.
The client-side session must therefore meet some minimum security
requirements:

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

27

◗ The persistent information of the client session ID must be
stored associated to the tab, so that when the tab disappears,
all the information associated to this session disappears. This
can be implemented through code within the page itself or
through the sessionStorage object.

◗ Persistent client session information must always be deleted
at the login screen and created when the session is created on
the server, not before.

◗ 		Allow	the	client	session	to	make	empty	transactions	against	the	
server simply to tell the server that the session should remain
active and not expire. This behaviour should be on-demand on
screens	that	require	a	lot	of	client-side	attention,	never	as	a	de-
fault behaviour.

◗ 		As	with	server	sessions,	 they	should	control	 the	maximum	in-
activity time with a similar or lesser time than server sessions.
In case of inactivity on the client side, the client session should
launch	a	 logout	request	 to	the	server	and	redirect	 to	 the	 login
screen. Setting an absolute maximum session timeout may
also be advisable.

◗ The information stored in these client sessions should be mini-
mal and necessary for the navigation logic and should not con-
tain sensitive information. It could contain the server access
token	to	avoid	dragging	it	in	all	requests	(if	any).

◗ Login	timeout,	to	prevent	session	fixation	attacks.

◗ 		Force	client	and	server	logout	on	browser	window	or	tab	close	
events.

5.1.2. Session	ID

The minimum security controls associated with the session ID are:

◗ Any	session	identifier	must	be	unique,	sufficiently	random	and	
of a suitable length as provided by a cryptographically secure
hash	from	a	random	number,	with	a	significant	key	length.

◗ The random number generator to create the session ID must
be a secure random number generator.

◗ IDs must be validated by the server to ensure that they are in
valid format and are part of active and valid sessions.

◗ Session IDs must not be registered. If necessary for session
traceability, use a different ID, never use the ID used for session
identification in client-server traffic.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

28

◗ A	 new session ID must be generated at each login or when
there is a change in the user's privilege level, to prevent session
fixation	attacks.

◗ The storage and monitoring of active session IDs must be
secure to prevent unauthorised access by unauthorised per-
sonnel.

5.1.3. Logging	out

When a server session is closed, the following security controls must
be	taken	into	account:

◗ 	Always redirect the user to the login page.

◗ Ensure that the customer will delete all cookie or access token
information.

◗ Ensure that the client will delete all information from the client
session (if applicable).

◗ Logging logouts in the security register

5.1.4. Expiry	of	the	session

The minimum security controls on session expiry are:

◗ Every session should have a reasonable maximum lifetime in
case of inactivity to avoid the session remaining permanently
active.

◗ When the server session expires you must delete all informa-
tion related to this session.

◗ Record session expirations in the security log.

◗ Set an absolute maximum time for the duration of a session.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

29

5.1.5. Session	management	in	mobile	applications

For	usability	reasons,	mobile	applications	often	require	sessions	to	last	
longer than web applications. Recommendations for managing ses-
sions in mobile applications are:

◗ Use tokens that can be removed if the device is lost or stolen.

◗ The session timeout of the mobile application shall be configured
and expire depending on the sensitivity of the application.

◗ Use a server-based data store to facilitate the use of the session
on multiple pages.

◗ Never use a device identifier as a session token.

5.2. Potential	risks

 Session prediction: focuses on predicting session ID values
that	allow	an	attacker	to	bypass an application's authentication
scheme.

 Session	hijacking:	The	session	hijacking	attack	consists	of	ex-
ploiting the web session control mechanism, usually managed
by a session token.

 Session fixation: this consists of obtaining a valid session ID
(e.g. by establishing a connection to the application), inducing
a	user	to	authenticate	with	that	session	ID,	and	then	hijacking	
the user's validated session to learn the session ID used.

 Session spoofing:	when	the	attacker	gains	the	identity	of	an-
other	entity	to	commit	some	kind	of	fraud.	For	example,	an	at-
tacker	who	generates	a	malicious	website	under	the	guise	of	a	
legitimate	bank	to	deceive	victims	through	phishing.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

Use a server-based
data store	to	facilitate	
the use of the session
on multiple	pages

30

5.3. Security	recommendations

 It is crucial to ensure that the session ID is never exposed in
unencrypted traffic.

 Implement secure headers with directives such as cache-con-
trol or strict-transport	security.

 Check	that	sessions	are	invalidated	when	the	user	logs	out.

 Sessions must expire after a specified time of inactivity.

 Ensure	 that	 all	 pages	 requiring	authentication	have	easy	and	
user-friendly access to the logout functionality.

 	Verify that the session ID never appears in URLs, error messag-
es or logs.

 Ensure that every successful authentication and re-authentica-
tion generates a new session and a new session ID, destroying
the old one.

 Check	that	the	session	ID	stored	in	the	cookies is set using the
HttpOnly and Secure attributes.

 Set the Path attribute of session cookies appropriately to pre-
vent access to other domains.

 Check	that	the	application	keeps	track	of	all	the	active	sessions	
and allows the user to end sessions selectively or globally from
their account.

 In the case of high-value applications, ensure that the user is
required	 to	 close	 all	 the	 active	 sessions	 if	 the	 password	 has	
just been successfully changed.

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

It is crucial to ensure
that the	session	ID	
is never exposed in
unencrypted	traffic.

31

 Limit access to protected URLs, roles, application data, user
attributes and access configuration data only to authorised
users.

 Record in a security log all the sessions that are created, man-
ually closed or expired from the client or from the server identi-
fied by the username and the server's internal session ID (not
shared with the client) including the date/time of the event.

5.4. Example

In Java, session management can be performed by using the javax.
servlet.http.HttpSession interface. This interface provides methods to
store and retrieve session attributes, set and get the session timeout,
and invalidate the session.

To use the HttpSession	interface,	an	instance	must	first	be	obtained:

HttpSession session = request.getSession();

 Then, the interface methods can be used to carry out session man-
agement:

session.setAttribute(“user”, “John”);

To retrieve a session attribute:

String user = (String) session.getAttribute("user");

To set the session timeout time (in seconds):

session.setMaxInactiveInterval(3600);

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

32

To invalidate the session:

session.invalidate();

It is important to note that to ensure the security of session manage-
ment, secure HTTPS cookies	must	be	used	and	unique	and	unpredicta-
ble	session	 identifiers	must	be	generated.	Also	make	sure	to	validate	
the	 request	 and	 the	 session	 state	 for	 each	 request	 to	 avoid	 session	
spoofing.

import java.security.MessageDigest;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Base64;
...

SecureRandom random = new SecureRandom();
byte[] bytes = new byte[32];
random.nextBytes(bytes);
MessageDigest digest = MessageDigest.getInstance("SHA-256");
byte[] hashedSessionId = digest.digest(bytes);
String sessionId = Base64.getEncoder().encodeToString(hashedSessionId);

Cookie sessionCookie = new Cookie("SESSIONID", sessionId);
sessionCookie.setHttpOnly(true);
sessionCookie.setSecure(true);
sessionCookie.setMaxAge(3600); // expira en 1 hora
response.addCookie(sessionCookie);

5.5. References OWASP. Secure Session Management:
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_	
Cheat_Sheet.html	[8]

 Java. SpringSession Framework:
https://www.baeldung.com/spring-session [9]

CCN-CERT BP/28: Recommendations on Secure Development

5. Session management

33

6. Validation	of	input	
and output data

It is one of the most important critical areas of application security. Most
application	vulnerabilities	arise	from	incorrect	or	insufficient	validation	
of	 input	or	output	data	that	 is	exploited	for	attacks	such	as	cross- site
scripting, general injections, exposure of sensitive data or DoS.

Although	 validation	 of	 output	 data	 is	 not	 a	 very	 common	 activity	
among	developers,	 it	 is	equally	 important,	and	could	be	exploited	by	
malicious	users	if	adequate	security	measures	were	not	included.	The	
output returned by an application could be used to perform the same
types	of	attacks,	albeit	in	a	more	sophisticated	way.

Implementing validations of all input and output data does not guaran-
tee that the application will be free of vulnerabilities as such validations
may	be	insufficient	and	may	not	have	taken	into	account	other	types	
of functional or business logic issues that could affect the normal be-
haviour	of	 the	application.	An	example	of	 this	would	be	 validating	a	
numeric	input	where	it	is	checked	that	it	is	a	number,	that	it	is	positive	
and that it is not 0. However, if the application uses it within an iterative
loop, it could be called with a huge value and put the application in an
almost	infinite	loop;	which	would	be	a	DoS	attack.

CCN-CERT BP/28: Recommendations on Secure Development

Most application
vulnerabilities arise
from incorrect or
insufficient	validation	
of input or output data
that is exploited for
attacks	such	as	cross-
site scripting, general
injections, exposure of
sensitive data or DoS

34

6.1. Validation	Techniques

6.1.1. Sanitisation

It is a process for converting data that has more than one possible rep-
resentation into a standard, canonical or normalised format, reducing
the	input/output	to	a	single	converted	and/or	reduced	fixed	form.	This	
technique	alone	avoids	many	validation	problems	and	many	types	of	
attacks.

There are libraries for each type of language that already incorporate
sanitisation methods.

6.1.1.1. SANITISATION	OF	ROUTES	 All	the	file	or	directory	paths	are	normalised.
	 	For	example,	a	UNIX	path	such	as	/home/user/myFile.txt,	could	be	defined	

as /var/log/.../.../home/user/myFile.txt. This could be used by a malicious
user	to	browse	the	file	system	and	obtain	unauthorised	information.	To	avoid	
this,	the	path	is	canonicalised	to	a	fixed	form	or	the	"../"	and	"./"	substrings	are	
removed from the path directly.

6.1.1.2. SANITISATION	OF	SPACES	 	All	the	input	parameters	remove	spaces,	tab	characters	or	other	white	char-
acters (160) before and after the data.

 Some also choose to remove all white characters within the data and convert
them directly to a space code (32).

6.1.1.3. SANITISATION	OF	CHARSET	 	It	 is	 verified	 that	 all	 the	 characters	 entered	 in	 the	 data	 correspond	 to	 the	
expected charset. Those that do not, are deleted or transformed to a white
space.	Characters	that	may	arrive	encoded	as	"0xA0",	"/xA0",	"%A0",	etc.	are	
taken	into	account	to	be	decoded	before	being	processed.

6.1.1.4. CASE	SANITISATION	 	All	the	characters	are	converted	to	upper	or	lower	case,	as	required	by	the	
defined	parameter.

6.1.2. Data	type

Validates	that	the	received	data	is	of	the	expected	type	with	the	appro-
priate format. Data types can be simple or complex depending on the
definitions implemented in the application. Simple data types would
be, for example: integer, decimal, boolean, boolean, character string,
and	complex	data	types	would	be	e-mail,	NIF,	address,	name,	name,	
CP, date, time, URL, etc..

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

35

6.1.3. Format

It allows to validate data with more or less complex and variable for-
mats	but	which	can	perfectly	well	be	defined	within	a	regular	expres-
sion. Many of the complex data types validated in the previous point are
likely	to	be	done	using	this	technique.

The	 only	 thing	 to	 keep	 in	mind	 is	 to	 create	 a	 regular	 expression	 so	
complex	that	it	could	be	vulnerable	to	a	ReDoS	attack.	To	ensure	that	
this does not happen, you should validate the regular expression with
a tool that guarantees its security and suitability, such as RegEx 101
or RegEx Testing.

6.1.4. Minimum	and	maximum	sizes

Validates	that	the	size	(length)	of	the	data	exceeds	a	minimum	number	
of characters or does not exceed a maximum number of characters. This
check	would	prevent	sending	data	so	large	that	the	application	would	be	
"frozen" simply processing the input.

6.1.5. Minimum	and	maximum	values

Unlike	the	previous	point,	this	validation	applies	to	numeric	values	that	
must be within a range of maximum and minimum.

6.1.6. White	list

Validates	that	the	data	is	within	a	list	of	prefixed	data.	This	validation	is	
widely used on data that is part of enumerations..

6.1.7. Blacklist

Validates	that	the	data	is	not	found	within	a	list	of	prefixed	data.	This	
type	 of	 validation	 is	 often	 insufficient	 and	 dangerous	 because	 it	 can	
hardly cover all malicious possibilities.

However, it can be useful when deciding to reject texts containing of-
fensive	words	that	exist	within	a	blacklist.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

36

6.2. Flowchart

The	following	diagram	is	an	example	to	illustrate	the	workflow	for	vali-
dating	free	text	values.	It	includes	four	(4)	input	values	that	are	checked	
against	some	simple	requirements.	When	a	value	does	not	satisfy	any	
requirements,	the	input	data	must	be	rejected.

Check the minimum and
maximum length of the

entry value

Do the expected
values satisfy the

requisites?

OK: 2, 3, 4
Failed: 1

Are there any non-valid
characters?

OK: 3
Failed: 2, 4

Check the minimum and
maximum length of the

entry value

Check the non-valid
characters

Check the non-valid
characters in 2, 3 and 4

METHODOLOGY

Minimum length: 5
Maximum length: 25
Invalid characters:

#, @, etc

Requirement

EXAMPLE

Scenario

Validation of the strings
value of:

1. This is really impressive
2. <script> Test </script>
3. Policy 56
4. Appliance

Correct validation Correct validation
(Policy 56)

YES

YES

NO NO

NO NO

YES

YES

Abort the function
and close it in a

safe way

Show adequate error
messages (for example,
“The text “This is really

impressive” is not valid)

Show adequate error
messages (for example, “The

text 2 and 4 are not valid”)

Abort the function
and close it in a safe

way

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

37

6.3. Potential	risks

Data	 validation	 is	 the	source	of	many	 vulnerabilities	 that	 an	attacker	
can exploit. The following are some of the vulnerabilities related to in-
sufficient	or	missing	input	validation:

 Cross-Site Scripting:	is	a	type	of	attack	that	allows	a	malicious	
user to inject code into the victims' web browser.

 SQL Injection: exploits application programming flaws at the
input validation level to perform operations on a database ille-
gitimately.

 LDAP Injection:	consists	of	injecting	arbitrary	LDAP	queries	to	
access forbidden data or even obtain additional privileges.

 Log Injection: consists of injecting execution commands into
the system or any other type of problem using the log system
that records data from input parameter information.

 XEE Injection:	An	XPATH	injection	 is	 the	 injection	of	arbitrary	
XML	code	with	the	intention	to	access	data	that	should	not	be	
accessed	or	 to	 obtain	 information	 about	 the	XML	 tree	 struc-
ture.

 XML bomb:	This	attack	attempts	to	overload	XML	by	exceed-
ing the memory resources of an application to cause a denial
of service.

 DoS, DDoS or ReDoS:	denial	of	service	attacks	due	to	system	
error in processing unvalidated input causing system failures.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Data validation is
the	source	of	many	
vulnerabilities that an
attacker	can	exploit

38

6.4. Security	Recommendations

 	Validations should always be performed on the server side.
Client-side validations can also be useful but are only recom-
mended.

 	Failing that, use standard input validation mechanisms provid-
ed	by	technology-specific	libraries	(Spring	Validator,	etc.).

 	Fully cover data validation through validation schemes or
standard mechanisms that ensure data entry through: sani-
tisations,	data	 type,	 format,	 lengths,	values,	whitelists,	black-
lists, etc.

 Checking	 that	structured	data	 is	strongly	 typed	and	validated	
according to a defined schema, including allowed characters,
length and pattern, e.g. credit card or telephone numbers, or
validating that two related fields are reasonable, such as vali-
dating suburbs and postcodes.

 	Verify that unstructured data is sanitised to impose generic se-
curity measures, such as allowed characters and length, and
avoid potentially harmful characters.

 Ensure that all unreliable input is properly sanitised using a
sanitisation library.

 	Avoid displaying sensitive information because of a validation
error of a received parameter.

 	Accept only the expected data at each entry point of the appli-
cation that comes from the user, from the end process of all
input fields, forms, URLs, application cookies,	 etc.	 Any	 unex-
pected data should be rejected.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Validations should
always	be	performed	on	
the server side. Client-
side validations can also
be	useful	but	are	only	
recommended

39

 	Verify that server-side input validation errors result in rejection
of	the	request.

 Ensure that all database	queries	are	protected using parame-
terised	queries to prevent SQL injection.

 Check	that	 the	application	 is	not	susceptible	 to	command	 in-
jection.

 	Verify that all string variables located within HTML or other
web client code are correctly hand-coded in context or use
templates that automatically encode the context to ensure that
the	application	is	not	susceptible	to	cross-site	scripting	(XSS)	
reflected,	stored	or	DOM.

 Check	 that	 the	application	does	not	contain	mass	parameter	
assignment	 vulnerabilities	 (AKA	 automatic	 variable	 binding).	
Ensure that all input data is validated, not just HTML form
fields,	but	all	 input	sources	such	as	REST	requests,	query	pa-
rameters, HTTP headers, cookies, batch files, RSS feeds, etc.,
using whitelists, lesser forms of validation such as greylists
(which	remove	the	known	bad	strings)	or	blacklists	(which	re-
ject bad input).

 	Verify	that	the	application	restricts	XML	parsers	to	use	only	the	
most restrictive settings possible and ensure that dangerous
functions, such as external entity resolution, are disabled.

 	Verify that deserialisation of unreliable data is prevented or
largely protected when deserialisation cannot be avoided.

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

Verify	that	server-side	
input validation errors
result in rejection of the
request

40

6.5. Example

In Java Spring, annotations are used to
validate input parameters to methods
and allowed values in the members of
a class:

The @Valid annotation is used in conjunction with a validation object to
validate the input parameters of a controller method.

The @NotBlank and @Email annotations to indicate that the name	field	
must	not	be	blank	and	that	the	email	field must be in a valid email ad-
dress format.

@PostMapping("/users")
public ResponseEntity<User> createUser(@Valid @RequestBody User user) {
 ...
 return ResponseEntity.ok(user);
}

public class User {
 @NotBlank
 private String name;

 @Email
 private String email;

 ...
}

6.6. References OWASP. Parameter Validation:
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.
html [10]

 OWASP. Data Validation - ESAPI Library:
https://owasp.org/www-project-enterprise-security-api/ [11]

 Validation of Web Forms in Javascript:
https://www.tutorialspoint.com/javascript_form_validation_web_application/index.
asp [12]

 Java. Spring Boot Validation:
//www.baeldung.com/spring-boot-bean-validation [13]

 XSS Prevention:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_
Cheat_Sheet.html	[14]

 Python. Colander Validation: https://pypi.org/project/colander/ [15]

 Python. Cerberus Validation: https://docs.python-cerberus.org/en/stable/ [16]

 Python. Validation Schematics: https://schematics.readthedocs.io/en/latest/ [17]

 Python. Schema Validation: https://pypi.org/project/schema/ [18]

 Python. JSON Schema Validation: https://pypi.org/project/jsonschema/ [19]

CCN-CERT BP/28: Recommendations on Secure Development

6. Validation of input and output data

41

7. Error	management

Error handling is about how to avoid displaying relevant or sensitive
information to users that could be used to launch other types of sophis-
ticated	attacks	against	the	application	and	how	to	handle	uncontrolled	
errors within the application to provide safe exits that do not allow un-
expected situations to be exploited by malicious users.

7.1. Confidentiality	
of messages

If the applications have not implemented proper error handling, they
may	inadvertently	reveal	information	about	their	configuration,	internal	
state, debugging messages, sensitive data, or even violate privacy.

Other	 ways	 of	 disclosing	 information	 include,	 for	 example,	 the	 time	
taken	 to	 process	 certain	 transactions,	 or	 offering	 different	 codes	 for	
different inputs.

All	this	information	could	be	exploited	to	launch,	or	even	automate,	very	
powerful	attacks,	which	makes	good	error	handling	essential.

CCN-CERT BP/28: Recommendations on Secure Development

If the applications
have not implemented
proper error handling,
they	may	inadvertently	
reveal information about
their	configuration,	
internal state, debugging
messages, sensitive
data, or even violate
privacy

42

POTENTIAL RISKS The	following	are	the	most	common	potential	risks	if	the	error	handling	
is not properly implemented within the application:

◗ Leakage	of	sensitive	information:	server version, database engine,
sensitive documents, file structure, etc.

◗ Denial of service: when errors forced through abuse can cause
system downtime.

◗ Cross-site scripting: when error messages show input parameters
that have not been correctly escaped.

7.2. Uncontrolled	errors

When situations where exceptions or errors at points in the application
could occur have not been contemplated, and do occur, the applica-
tion would cause an unexpected exit from the business logic that could
leave	it	in	a	vulnerable	state	to	subsequent	user	activities.

It is therefore imperative that all transactions are fully analysed in terms
of the various exceptions that may occur and that these exceptional
outflows	are	dealt	with	appropriately.

Another	way	to	exploit	unchecked	errors	is	when	resources	are	not	prop-
erly shut down, which can eventually cause a denial of service due to
excessive consumption of resources that are not shut down as a result
of forcing errors in the application. To avoid this vulnerability, it is essen-
tial to ensure that all resources are shut down when they are no longer
used, regardless of any errors that may appear during operations. It is
recommended to use try	/	finally statements to ensure the closure of
resources.

POTENTIAL RISKS The	following	are	the	most	common	potential	risks	if	error	handling	is	
not properly implemented within the application.

◗ Denial of service: when errors forced through abuse can cause
system downtime.

◗ Bypassing business logic: when unexpected exits from the busi-
ness logic occur by forcing exceptions or uncontrolled errors.

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

43

7.3. Security	recommendations

 Use generic error messages that do not give clues to end-users
about any sensitive aspects of the application.

 Use centralised exception handling.

 The application must handle errors without relying on server
error messages displayed to users.

 	Any access control logic that leads to an error must deny ac-
cess by default.

 	Analyse in detail all exceptions that may occur due to the use of
system libraries or third-party libraries in the application, han-
dle them appropriately and provide a safe exit to the applica-
tion.

 Use try/catch/finally to ensure the shutdown of all resources
in case of error.

 Log all unexpected exceptions in a specific log indicating,
among others, the date/time of the failure, the user who
caused it and the method where the failure occurred, as well as
exception information. This log should be located in a secure
environment accessible only to authorised users.

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

44

7.4. Example

The	following	example	would	be	the	typical	code	block	that	should	be	
found in any method where you want to control errors that may appear
in	a	code	block.

Any	unhandled	exception	within	the	try	block	will	be	caught	by	catch
from	where	a	handled	exception	will	be	thrown.	And,	in	either	case,	the	
finally	block	will	be	executed	to	close	open	resources	before	the	try or
after the try

try {
 ...
 // code that can throw an exception
 ...
} catch (Exception e) {
 // exception handling
 log.error("ERROR", e);
 throw new CustomException("ERROR", e);
} finally {
 // closure or release of open resources
 ...
}

7.5. References Java. Try - Catch - Finally:
https://www.w3schools.com/java/java_try_catch.asp	[20]

 Java. Exception Handling:
https://www.baeldung.com/java-exceptions [21]

 Error Handling Strategies:
https://dzone.com/articles/error-handling-strategies [22]

 Python. Errors and Exceptions:
https://docs.python.org/es/3/tutorial/errors.html#errors-and-exceptions [23]

CCN-CERT BP/28: Recommendations on Secure Development

7. Error management

45

8. Secure	Registration

It consists of recording the activity of applications and system events
related to security, in terms of authentication, authorisation, integrity
or	 confidentiality,	 such	 as	 failed	 connection	 attempts,	 authorisation	
acquired	by	a	user,	accesses	to	sensitive	data,	etc.,	as	well	as	possible	
threats detected that can be controlled from the application: injections,
user	 enumeration,	 brute	 force	 attacks,	 etc.	 The	 latter	 is	 especially	
important when forensic analysis of security incidents that have oc-
curred is desired.

Security records must be specially protected at the level of authentica-
tion,	integrity,	confidentiality,	availability	and	traceability:

 Authentication/Authorisation: only identified and authorised
persons can have access to the registry.

 Integrity: the registry maintains an integrity signature that
ensures that it has not been tampered with at the registry level
or at the record level. This signature is updated with each new
entry in the registry.

 Confidentiality: sensitive	registry	data	is	tokenised,	anonymised	
or encrypted to prevent access to the registry by methods other
than those implemented for authorised access.

 Availability:	 records	 are	 stored	with	 redundancy	 and	 backup	
copies.

 Traceability/Auditability: they must be stored securely for a
retention time for audit purposes.

CCN-CERT BP/28: Recommendations on Secure Development

It consists of
recording	the	activity	
of applications and
system	events	related	
to	security,	in	terms	
of authentication,
authorisation,	integrity	
or confidentiality

46

8.1. Potential	risks

 Information	 leakage: logs may contain sensitive information
about the application or system and may not have been ade-
quately	protected	against	loopholes	in	access	authorisation.

 Log	forgery: an unauthorised user could modify log files, which
can lead to loss of traceability in the application or even allow
the malicious user to execute code on the system.

 Log deletion: a malicious user could delete logs to avoid leav-
ing traces of his crimes.

8.2. Security	recommendations

 Do not record sensitive information such as passwords, finan-
cial information, credit cards, personal details, etc. In these
cases, use tokens, anonymisation of information or encryption.

 	Validate the parameters of the variable components that will
make	up	the	 log	entry	to	avoid	 injections	and	unexpected	be-
haviour.

 Make	sufficiently	accurate	notes	for	security:

	 ◗ Authentication attempts, especially failures.

	 ◗ The accesses granted with the roles associated with the user.

	 ◗ Access	to	and	actions	taken	on	sensitive	data,	which	role	
was used and by which user.

	 ◗ Input validation errors.

	 ◗ Exceptions to the system.

CCN-CERT BP/28: Recommendations on Secure Development

8. Registro seguro

47

	 ◗ Possible detected threats or threat attempts that can be
controlled	by	the	application:	injections,	brute	force	attacks,	
user enumeration, business logic failures, unprivileged oper-
ation attempts, path traversal attempts, etc.

 Use the hash functions to ensure data integrity of records.

 The security register must be independent of other registers
and have its own security protections in the system.

8.3. Example

Secure logging in Java can be performed
using the java.util.logging library.

import java.util.logging.Logger;

public class MyClass {
 private static final Logger log = Logger.getLogger(MyClass.class.getName());

 public void myMethod() {
 // algunas operaciones que pueden lanzar una excepción
 try {
 // código que puede lanzar una excepción
 } catch (Exception e) {
 log.severe("Ocurrió un error grave: " + e.getMessage());
 }
 }
}

8.4. References Security Log. Best Practices for Logging and Management:
https://www.dnsstuff.com/security-log-best-practices [24]

 Java. Logging:
https://docs.oracle.com/javase/7/docs/technotes/guides/logging/index.html [25]

CCN-CERT BP/28: Recommendations on Secure Development

8. Registro seguro

48

9. Cryptography

Cryptography	is	a	technique	used	to	protect	information	and	commu-
nications	using	secret	codes	or	keys	and	is	an	essential	tool	for	pro-
tecting information and communications.

It is used to ensure the confidentiality, integrity and authenticity of
information and communications: confidentiality by protecting infor-
mation so that it can only be accessed by authorised persons, in-
tegrity by protecting information against unauthorised alteration and
authentication by verifying the identity of persons or systems access-
ing information.

Cryptography can be used in different ways: as encryption of sensitive
data to protect information or as a digital signature to ensure data integrity.

9.1. Use	of	encryption

9.1.1. Hash functions

A	 cryptographic	hash is a mathematical function that, from a set of
data,	produces	a	fixed	amount	of	data	called	a	 "digest"	or	 "hash".	De-
pending on the function used, the number of data obtained may vary,
but it will always generate the same amount of data for the same func-
tion, regardless of the number of data used in the input.

CCN-CERT BP/28: Recommendations on Secure Development

Cryptography	is	a	
technique	used	to	
protect information and
communications using
secret codes

49

The power of cryptographic hashing is that the probability of generating
the same output data, in the same order, from a different input is very low,
very	unlikely.	 If	 this	were	to	happen,	a	so-called	"collision"	would	occur,	
and this effect, discovered in one of these mathematical functions,
could	be	exploited	by	malicious	users	for	some	security	attacks.

A	hash function is commonly used to verify the integrity of data, since
any	change	in	the	original	input	will	be	reflected	in	a	significant	change	
in the resulting hash. When the hash function is fed with the data we
want to secure, the output data from the function provides us with the
verification	hash. This hash could only be retrieved again with the same
function, with the same input data and in the same order.

Hash	functions	are	used	for	the	storage	of	passwords	or	to	check	the	
integrity	of	data	to	ensure	that	it	has	not	been	modified.

9.1.2. Symmetric	encryption

Symmetric	encryption	is	a	type	of	encryption	in	which	the	same	key	is	
used for both encrypting and decrypting information. It is used to pro-
tect	the	confidentiality	of	information	during	transmission	or	as	storage	
on a device.

The main advantage of symmetric encryption is that it is fast and easy
to implement. Its main disadvantage is that both parties must share the
secret	key	in	order	to	communicate	securely.	This	can	be	a	problem	in	
distributed	environments,	as	it	requires	a	secure	mechanism	to	share	
the	key	reliably.

9.1.3. Asymmetric	encryption

Asymmetric	encryption	is	a	type	of	encryption	in	which	two	(2)	differ-
ent	keys,	known	as	public	key	and	private	key,	are	used	to	encrypt	and	
decrypt	information.	The	public	key	is	used	to	encrypt	the	information	
and	can	be	shared	without	problems,	while	the	private	key	 is	used	to	
decrypt	the	information	and	must	be	kept	secret.

The	advantages	of	asymmetric	encryption	are	that	the	private	key	does	
not need to be shared to establish secure communication. The public
key	can	be	shared	seamlessly	and	is	used	to	encrypt	the	information,	
while	the	private	key	is	used	to	decrypt	it.	However,	asymmetric	encryp-
tion	is	slower	than	symmetric	encryption	and	can	be	more	difficult	to	
implement.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

50

9.2. Potential	risks

Information that is not encrypted or not properly encrypted is exposed
to	the	following	risks:

 Exposure of sensitive information: sensitive data would be
clear to any unauthorised person.

 Credential theft and spoofing: sensitive password information
stolen could be used to impersonate another user and to carry
out	other	attacks	such	as	spoofing.

 Leakage	 of	 personal	 data: this is data protected by country
regulations whose privacy violation could result in financial
penalties.

 Loss	of	reputation	of	the	company:	as	a	consequence	of	all	of	
the above.

 MitM	(Man-in-the-Middle)	attacks: if communications are not
well secured, communications could be intercepted, and the
entire data stream decrypted to obtain valuable information
that	could	be	used	for	other	attacks.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

51

9.3. Security	recommendations

 	All sensitive information of an organisation such as pass-
words, personal data, log repositories or any other information
labelled as confidential or superior to the company must be
stored in an unreadable (encrypted) form to ensure the confi-
dentiality of the company.

 Check	 that	 all	 random	numbers,	 random	 file	 names,	 random	
GUIDs	and	random	strings	are	generated	by	a	random	number	
generator approved by the cryptographic module.

 Check	 that	 there	 is	an	explicit	policy	on	 the	handling	of	cryp-
tographic	keys	(such	as	generation,	distribution,	revocation	and	
deprecation).

 Check	that	 the	 lifecycle	of	cryptographic	keys	 is	correctly	 im-
plemented.

 Ensure that sensitive passwords or critical information residing
in memory are overwritten with zeros as soon as they are no
longer	used	to	mitigate	memory	dump	attacks.	

 Check	 that	 random	numbers	are	created	with	an	appropriate	
level of entropy, even when the application is under high load.

 Check	that	obsolete	or	weak	cryptographic	algorithms	such	as	
the	 symmetric	 key	DES	 algorithm	or	hash functions such as
MD5	or	SHA-1	are	not	used	due	to	the	impossibility	to	guaran-
tee confidentiality.

 Use existing cryptographic libraries and in any case use custom
or user-created cryptographic algorithms or implementations.

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

All sensitive information
of an organisation
such as passwords,
personal data, log
repositories	or	any	other	
information labelled as
confidential	or	superior	
to	the	company	must	be	
stored in an unreadable
(encrypted)	form	to	
ensure	the	confidentiality	
of	the	company.

52

9.4. Example

In this example, symmetric cryptog-
raphy is used to encrypt a message
using	a	secret	key	and	an	initialisation	
vector	 (IV)	 to	 protect	 against	 "key	 re-
use"	attacks.	

import java.security.SecureRandom;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;

public class AdvancedCryptographyExample {
 public static void main(String[] args) throws Exception {
  // We generate a secret key for symmetric cryptography.
  KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
  keyGenerator.init(256); // we use a 256-bit key
  SecretKey secretKey = keyGenerator.generateKey();

  // We generate an initialisation vector (IV) for symmetric cryptography
  byte[] iv = new byte[16]; // los IV típicamente tienen un tamaño de 16 bytes
  SecureRandom secureRandom = new SecureRandom();
  secureRandom.nextBytes(iv);
  IvParameterSpec ivParameterSpec = new IvParameterSpec(iv);

  // Encrypt a message using the secret key and the IV
  String message = "Este es un mensaje secreto";
  Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
  cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivParameterSpec);
  byte[] encryptedMessage = cipher.doFinal(message.getBytes());

   // We store the secret key in a secure way (e.g. using an encryption key)
  saveSecretKey(secretKey);

   // Save the IV and the encrypted message somehow (e.g. in a database)
  saveIvAndEncryptedMessage(iv, encryptedMessage);
 }

 private static void saveSecretKey(SecretKey secretKey) {
   // We store the secret key in some way (e.g. using an encryption key)
 }

 private static void saveIvAndEncryptedMessage(byte[] iv, byte[] encryptedMessage) {
   // Save the IV and the encrypted message somehow (e.g. in a database)
 }
}

9.5. References OWASP. Secure cryptography in Java:
https://www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions	[26]

 Scrypt key derivation function:
 https://www.tarsnap.com/scrypt.html [27]

 Python. bcrypt cryptographic functions:
https://pypi.org/project/bcrypt/ [28]

CCN-CERT BP/28: Recommendations on Secure Development

9. Cryptography

53

10.	Secure	file	
management

It	is	a	process	that	involves	the	protection	of	data	stored	in	files	to	en-
sure	 their	 integrity,	confidentiality	and	availability,	 including	measures	
such as cryptography, authentication, authorisation, access control and
backup.

This process should be considered during the design phase of an ap-
plication and then implemented during its development. Most applica-
tions	rely	on	internal	files	in	order	to	function	and,	in	addition,	if	the	file	
uploading by users are allowed, appropriate security controls must be
put in place.

10.1.Potential
risks
Without	good	file	management,	the	following	risks	
could exist:

 Unauthorised access to files, which would result in the:
	 ◗ Disclosure of data.
	 ◗ Loss of sensitive information.
	 ◗ Data manipulation.
	 ◗ Deletion of data.

 Loading of malicious files, which would result in the:
	 ◗ Remote file execution.
	 ◗ Denial	of	service	attack.
	 ◗ Malware infection.

 Lack	of	backups:
	 ◗ Unavailability of service (DoS).
	 ◗ Loss of user data.
	 ◗ Loss of valuable data to the company.

CCN-CERT BP/28: Recommendations on Secure Development

54

10.2. Security	recommendations

 	Authenticate and authorise the user before uploading or down-
loading any files, especially if the data is sensitive.

 Do not use user-supplied input to name files or directories.

 	Validate	 content	 types	 not	 only	 by	 extension,	 but	 also	 check	
MIME types to verify files.

 Do not allow executable files to be uploaded to the application.

 Limit file sizes to the minimum that the server can handle with-
out causing availability problems and impacting application
functionality.

 Before processing the files to the server, an anti-virus scanner
checks	the	files	for	malware	or	viruses.

 Disable execution privileges on directories where users can up-
load files.

 Do	not	use	absolute	paths	when	providing	a	download	link	to	
the user.

 Do	not	store	files	with	their	names	sequentially.

 Do not use sensitive information for file naming.

 Ensure that the access control is set to read-only.

 Limit the number of files uploaded by the user.

 Store hashes of uploaded files to ensure their integrity.

CCN-CERT BP/28: Recommendations on Secure Development

10. Gestión segura de archivos

55

10.3. Example

The following example validates the
file	size	and	checks	that	the	mimetype
matches what is expected before pro-
cessing	the	file.	

Another	 solution	 is	 to	 configure	 the	
Apache	 server	 to	 limit	 this	 type	 of	
request.	This	is	optimal	in	terms	of	per-
formance and more secure because
the	request	stays	on	the	web	server	and	
does not even enter the application.

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

public class FileManager {
 private static final long MAX_FILE_SIZE = 10485760; // 10MB
  private static final List<String> ALLOWED_MIME_TYPES = List.of

 ("text/plain", "image/jpeg", "image/png");

 public static void processFile(String filePath) throws IOException {
  // Check that the file exists and is readable
  File file = new File(filePath);
  if (!file.exists() || !file.canRead()) {
   throw new IOException("File does not exist or cannot be read");
  }
  // Check file size
  long fileSize = file.length();
  if (fileSize > MAX_FILE_SIZE) {
   throw new IOException(("File is too large");
  }
  // Check the file's mimetype
  Path path = Paths.get(filePath);
  String mimeType = Files.probeContentType(path);
  if (!ALLOWED_MIME_TYPES.contains(mimeType)) {
   throw new IOException("File type is not allowed");
  }
       // Process the file
  // ...
 }
}

LimitRequestBody 10485760
SetEnvIf Request_URI "^.*$" ALLOWED_MIME_TYPE=1
SetEnvIf Request_URI "^.*\.(txt|jpe?g|png)$" ALLOWED_MIME_TYPE=1

10.4. References Apache	Server.	Configuration	Directives:
https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestbody	[29]

 Java. Canonisation of Path:
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/File.
html#getCanonicalPath() [30]

 PHP. Path canonicalisation:
https://www.php.net/manual/es/function.realpath.php [31]

	 	Python:	Mapping	files	with	their	MimeTypes:	
https://docs.python.org/3/library/mimetypes.html [32]

CCN-CERT BP/28: Recommendations on Secure Development

10. Gestión segura de archivos

56

11. Transaction
security

It	is	a	set	of	measures	designed	to	protect	financial	and	payment	trans-
actions	from	possible	fraud	or	attacks.	These	measures	include:

 User authentication: only authorised persons have access to fi-
nancial transactions and accounts. User authentication typically
includes strong passwords and, ideally, two-factor authentication.

 Cryptography: helps to protect confidential information during
transactions.

 Validation of transactions: to ensure that they are legitimate and
not	part	of	a	fraud	or	cyber-attack.

 Transaction monitoring: to help detect and prevent potential
fraud	or	attacks	in	real	time.

 Back-up:	A	data	recovery	plan	in	case	of	an	attack	or	accidental	
loss of data ensures data availability.

Any	interaction	with	a	complex	data	structure	consisting	of	several	se-
quentially	applied	processes	must	be	carried	out	at	once	and	in	a	secure	
manner.

They must meet the following properties:

Atomicity

Transactions must have a start point
and an end point, always and in any

case. They must be uniquely
identified. And all operations

performed by the transaction must
execute successfully or, in case of
error, rollback the operations to the

initial state.

Consistency

Transaction data must be validated
and consistent in terms of its

integrity and, in case of causing a
change of state, a valid and

expected state.

Isolation

Transaction operations can be
performed independently of the
operations of other transactions

without affecting each other's data
or their particular states.

Durability

Transactions have a maximum
lifetime, and once completed, their

information is persistent.

CCN-CERT BP/28: Recommendations on Secure Development

57

11.1. 
Potential	risks
There	are	several	potential	risks	associated	with	
transactions:

 Exploitation	of	 the	Payment	Bypass	vulnerability: due to an
inadequate	configuration	of	the	payment	system.	It	allows	an	
attacker	to	manipulate	the	parameters	exchanged	between	the	
client and the server by processing the response before it is
sent to the payment gateway and bypassing the payment sys-
tem in general.

 Fraud:	making	use	of	false	information	or	manipulating	trans-
actions to obtain illicit benefits.

 Theft of confidential information: to be used to do commer-
cial	damage	or	for	future	attacks

 Disruption of transaction processing: through DoS/DDoS at-
tacks.

 Loss of data:	due	to	system	failures,	attacks	or	natural	disas-
ters	 with	 serious	 consequences	 for	 transactions,	 which	may	
affect the confidentiality and integrity of information.

11.2. Security	recommendations

 To	avoid	Payment	Bypass	vulnerability:

	 ◗ The authorisation and confirmation of a purchase must be
done on the server side.

	 ◗ It is necessary to validate that the signatures used are cor-
rect during the communication process with the payment
gateway.

	 ◗ Validate that the price is correctly set on the server side.

	 ◗ Validate that payments are not reused.

	 ◗ The	payment	server	must	always	check	at	which	stage	of	
the transaction you are in.

 Include	a	relatively	short	authorisation	expiry	time	for	each	
transaction.

CCN-CERT BP/28: Recommendations on Secure Development

11. Transaction security

58

 Ensure	traceability	of	transactions.

 Encrypt	communications	with	robust	asymmetric	algorithms.

 Detailed	recording	of	all	transactions	with	anonymisation	of	
sensitive information.

11.3. Example

This example could serve as a guide to avoid the Payment ByPass vul-
nerability:

import java.math.BigDecimal;

public class PaymentProcessor {

 private static final BigDecimal MIN_PAYMENT_AMOUNT = new BigDecimal("0.01");

 public void processPayment(String tId, BigDecimal amount, String paymentMethod) {
  // Check if the transaction ID is valid
  if (tId == null || !isValidTransactionId(tId)) {
  throw new IllegalArgumentException(("Invalid transaction ID");
  }
  // Check if the amount and method of payment is valid
  if (amount == null || amount.compareTo(MIN_PAYMENT_AMOUNT) < 0) {
  throw new IllegalArgumentException("Invalid payment amount");
  }
  if (paymentMethod == null || !isValidPaymentMethod(paymentMethod)) {
   throw new IllegalArgumentException("Invalid payment method");
  }
  // Process payment
 }
 private boolean isValidTransactionId(String transactionId) {
  // Check if the transaction ID is in the list of allowed IDs
 }
 private boolean isValidPaymentMethod(String paymentMethod) {
  // Check if the payment method is in the list of allowed payment methods
 }
}

11.4. References WordPress. Plugin to avoid the Payment ByPass vulnerability:
https://www.acunetix.com/vulnerabilities/web/wordpress-plugin-nab-transact-
security-bypass-2-1-0/

CCN-CERT BP/28: Recommendations on Secure Development

11. Transaction security

59

12. Communications	
security

Security in application communications is essential to protect the con-
fidentiality,	integrity	and	availability	of	information	transmitted	through	
applications. This is especially important in the context of mobile appli-
cations, where information may be transmitted over insecure or public
networks.

12.1. Potential	risks

An	application	without	communication	security	measures	
is exposed to several potential threats:

 Theft of confidential information.

 Service interruptiono.

 Identity	theft.

 Modification or destruction of data.

 Spread of malicious software.

CCN-CERT BP/28: Recommendations on Secure Development

Security	in	application	
communications is
essential to protect the
confidentiality,	integrity	
and	availability	of	
information transmitted
through applications

60

12.2. Security	recommendations

 Always	encrypt	communication	channels	by	means	of:

 E TLS: is a cryptographic protocol that allows communica-
tion channels to be encrypted. This protocol applies priva-
cy, authentication and data integrity as properties of the
communication channel.

 E WebSocket: is a technology that provides a bidirectional
(two-way, send and receive) and full-duplex (simultane-
ous)	communication	channel	over	the	same	TCP	socket.

 It	 uses	 strong	cryptography: strong	 enough	 to	make	any	 at-
tempt at decryption futile.

 Use	security	protocols:	such	as	HTTPS	or	FTPS.

CCN-CERT BP/28: Recommendations on Secure Development

12. Communications security

61

13. Data	protection

The components on which security is focused to protect data are the
following::

 Authentication: the user accessing the data is who he/she
claims to be and is given roles or access privileges

 Authorisation: access privileges or user roles allow only cer-
tain types of operations on only certain data.

 Confidentiality: data must be protected from unauthorised ob-
servation or disclosure in transit and when stored.

 Integrity: data must be protected in case it is maliciously cre-
ated,	modified	or	deleted	by	unauthorised	attackers.

 Availability: data must be available to authorised users when-
ever	necessary	(backup	policies).

This standard assumes that data protection is implemented in a trust-
ed	system	that	has	been	built	with	sufficient	security	safeguards.

CCN-CERT BP/28: Recommendations on Secure Development

62

13.1. Potential	risks

Any	security	vulnerability	that	is	exploited	in	an	application's	data	could	
lead to:

 Failure	to	comply	with	the	regulations and legislation on the
processing of personal data may result in financial penalties or
interruption of the service.

 Compromise or loss of sensitive company information.

 Compromise or loss of sensitive third-party information which
could lead to litigation and financial loss.

 Loss of corporate image.

 Loss of certifications	 as	 a	 consequence	 of	 non-compliance	
regarding data protection.

13.2. Security	recommendations

 Check	that	all	sensitive	or	personal	information	to	be	handled	
by the application is identified, and that there is an explicit pol-
icy specifying how access to it is to be controlled, processed
and, when stored, properly encrypted in accordance with the
correct data protection guidelines, in compliance with local
laws and regulations.

 Ensure that all sensitive data is sent to the server in the HTTP
message body or headers, avoiding sending sensitive data via
URL parameters.

 Check	that	the	communication	channels	used	for	sending	con-
fidential data are secure using strong encryption algorithms.

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

63

 Check	 that	stored	sensitive	data	 is	encrypted	with	strong	en-
cryption algorithms.

 Check	 that	 the	 application	 sets	 sufficient	 headers	 against	
caching, so that any sensitive information is not stored in the
cache	of	modern	browsers	(e.g.	visit	over	cache	to	check	the	
disk	cache).

 Ensure that sensitive information stored in memory is overwrit-
ten with zeros as soon as it is not needed, to mitigate memory
dump	attacks.

 Verify that a secure data deletion policy is in place when assets
have reached the end of their life cycle.

13.3. Example

An	example	configuration	of	the	Apa-
che Tomcat server to secure commu-
nications with TLS would be, in the
server.xml file:

An	 example	 of	 using	 SSL	 sockets	 in	
Java:

<Connector
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="8443" maxThreads="200"
 scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="mykeystore" keystorePass="<password>"
 clientAuth="false" sslProtocol="TLS"/>

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;

// Create an SSL socket factory
SSLSocketFactory sslSocketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();

// Create an SSL socket and establish the connection
SSLSocket sslSocket = (SSLSocket) sslSocketFactory.createSocket("www.example.com", 443);

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

64

An	 example	 of	 using	HTTPS	 connec-
tions in Java:

An	 example	 of	 using	 secure	 connec-
tions	 with	WebSockets	 in	 Java	script,	
on the client side

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.URL;
import java.net.URLConnection;

// Create an HTTPS connection
URL url = new URL("https://www.example.com");
URLConnection connection = url.openConnection();

// Send a POST request to the HTTPS connection
connection.setDoOutput(true);
OutputStreamWriter out = new OutputStreamWriter(connection.getOutputStream());
out.write("param1=value1¶m2=value2");
out.close();

// Read HTTPS connection response
BufferedReader in = new BufferedReader(new InputStreamReader(connection.
getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
}
in.close();

// Create an HTTPS connection with WebSockets
const socket = new WebSocket("wss://www.example.com/ws");

// Send a message over HTTPS connection
socket.send("Hello, world!");

// Receive messages from HTTPS connection
socket.onmessage = function(event) {
 console.log("Mensaje recibido:", event.data);
};

13.4. References SSL/TLS algorithms:
https://docs.oracle.com/en/java/javase/15/docs/specs/security/standard-
names.html#sslcontext-algorithms [34]

 Java. HttpClient with SSL:
https://www.baeldung.com/java-httpclient-ssl [35]

 Python. SSL/TLS:
https://docs.python.org/3/library/ssl.html [36]

 Python. WebSockets:
https://pypi.org/project/websockets/	[37]

CCN-CERT BP/28: Recommendations on Secure Development

13. Data protection

65

14. Python:	
Complementary	
indications

14.1. Architecture

14.1.1. Virtual	Environment

It is advisable to use a virtual environment in any Python project,
which	is	equipped	to	separate	application	development	in	virtual	en-
vironments.

A	 virtual	 environment	 isolates	 the	 Python	 interpreter,	 libraries	 and	
scripts installed in it. This means that instead of using a global version
of Python and global Python dependencies for all the projects you want
to	develop,	you	can	have	specific	virtual	environments	for	each	project	
and in each one you can have your own versions of Python, as well as
its dependencies.

Virtual	environments	 facilitate	 the	development,	packaging	and	deliv-
ery of secure Python applications. Most IDEs have built-in functions for
switching between virtual environments.

A	link	to	the	Python	library	for	creating	venv virtual environments can
be found below
 https://docs.python.org/3/library/venv.html [38]

CCN-CERT BP/28: Recommendations on Secure Development

66

14.1.2. Importing	packages

When	working	with	 external	 or	 internal	Python	modules,	 always	make	
sure that you are importing in the correct way and using the correct paths.
There are two types of import paths in Python, absolute and relative.

Absolute	import	specifies	the	path	of	the	resource	to	import	using	its	
full path from the root folder of the project, while relative import speci-
fies	the	resource	to	import	relative	to	the	current	location	in	the	project	
where the import statement is located.

There are two (2) types of relative imports:

 Implicit: Implicit imports do not specify the path of the re-
source relative to the current module. Implicit import has been
removed from Python 3, because if the specified module is in
the system path, it will be imported and that could be very dan-
gerous. It is possible that a malicious module with the same
name is in a popular open-source library and finds its way into
the system path. If the malicious module is found before the
real module, it will be imported and could be used to exploit
applications that have it in their dependency tree.

 Therefore, either absolute import or explicit relative import
should be used, ensuring the import of the actual and the in-
tended module.

 Explicit: Explicit imports specify the exact path of the module
to be imported in relation to the current module

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

67

14.2. Authentication

The Django framework, based on the Python language, has, in its default
configuration,	 an	 authentication	 system and supports an extension
and customisation of authentication. It provides both authentication
and authorisation together. It handles user accounts, groups, permis-
sions and user sessions based on cookies. This system consists of:

 “Users” objects: are the core of the authentication system. They
typically represent the people who interact with the application
and	are	used	to	allow	things	like	restricting	access,	registering	
user profiles, associating content with creators, etc. There is
only	one	kind	of	user	in	Django's	authentication	framework, i.e.
"superusers" or "staff" admin users are just user’s objects with
special attributes set.

 Permissions and Authorisation: Django comes with a built-in
permissions system. It provides a way to assign permissions
to specific users and user groups.

 Authentication	 on	web	 requests: Django uses sessions and
middleware	 to	 hook	 the	 authentication	 system	 into	 request	
objects. These provide a request.user attribute on each re-
quest	that	represents	the	current	user.	If	the	current	user	is	not	
logged in, this attribute will be an instance of AnonymousUser,
otherwise it will be an instance of User.

 User management in the admin panel: when both django.con-
trib.admin and django.contrib.auth are installed, the admin
panel provides a mode.

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

The Django framework,
based	on	the	Python	
language, has, in its
default	configuration,	
an authentication
system	and	supports	
an extension and
customisation of
authentication

68

14.3. Session	management

It	 is	 recommended	use	 the	default	 implementations	of	CSRF	protec-
tions that exist in the vast majority of frameworks, such as the Django
framework,	which	has	CSRF	middleware	enabled	by	default,	as	well	as	
the template tag and the Flask	framework.

Python example with Django framework.

 settings.py	file: leave	the	default	middleware	CSRF	enabled	in	
the settings file.

 File template_example_csrf.html: add the csrf_token tag in-
side	the	<form>	element	with	POST	method	for	an	internal	URL:

 Views.py	file: RequestContext must be used in the rendering
of the response for the {% csrf %}	 tag	to	work	correctly.	Note	
that if you use the render() function, generic views apps con-
trib,	 this	 is	already	covered	as	 they	all	make	use	of	Request-
Context:.

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

69

14.4. Validation	of	input	
parameters

14.4.1. Parameterised	database	queries

The	use	of	parameterised	queries	is	recommended	for	any	application	
access to the database.

Example	of	safe	Python	code	with	safe	query	parameter	passing.	The	
following	code	fragment	defines	the	is_admin	function	that	receives	a	
string as input parameter and returns a boolean. If the user does not
exist	 it	 returns	False	and	 if	 the	user	exists,	 it	 returns	 the	value	of	 the	
admin	column	which	can	be	True	if	it	is	an	administrator	or	False	if	it	is	
not an administrator.

By	parameterising	the	query	and	validating	whether	the	query	result	is	
None,	a	SQL	Injection	vulnerability	attack	is	prevented:

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

70

14.4.2. Protection	of	Forms

It is recommended to protect forms where there are parameters
whose value can be modified by users. This is achieved with the fol-
lowing measures:

 Properly	encoding data output: this mainly consists of apply-
ing HTML encoding to any output that reproduces data entered
by the user at the input, so that it cannot be interpreted as code
by the browser:

	 ◗ Indicate the type of the response content in its Content-type
header (see IANA media-types for supported types: applica-
tion/json, text/html...), so that the client side knows how to
interpret it.1 [39] for supported types: application/json, text/
html…),	so	that	the	client	side	knows	how	to	interpret	it.

	 ◗ Include X-Content-Type-Options=nosniff header to avoid MIME-
sniffing by some browsers, and therefore rendering content
differently than declared in the Content-type.

 Filter	potentially	dangerous	meta-characters: in vulnerable in-
put.	For	example,	the	characters	"<"	">"	";"	"/"	"/"	"and	all	non-print-
able characters should be properly filtered out from the input in
the application.

 Apply	form	data	filtering	policies.

 Example of secure Python code making use of the functions html.
escape (converts the &, < and > characters of the string received

as input parameter into HTML-safe sequences) and html.unescape

(converts the) from the html library:

1 Media Types https://www.iana.org/assignments/media-types/media-types.xhtml

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

71

 Session cookies	marked	with	the	HttpOnly flag to prevent ses-
sion	theft	in	case	of	exploiting	an	XSS	vulnerability.	

 Implement all recommendations on the server side.

 Validation of Inputs. It is recommended to always use a whitelist
or	blacklist	approach,	with	the	whitelist	being	the	most	recom-
mended approach where anything that does not fit the specifi-
cations is rejected.

 These	checks	must	be	done	on	both	 the	client-side	and	serv-
er-side, at a minimum on the server-side to ensure that the busi-
ness logic treats the data securely (CWE-602)2 [40].

 	On the other hand, it is also necessary in any typed language to
transform the data types into the expected type, for example, if
a String is received and an Int is expected, to perform a casting
or transformation.

 Example of secure Python whitelisted
code:

 Example of safe Python code regular
expression	checking:

2	 CWE-602	https://cwe.mitre.org/data/definitions/602.html

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

Example of Python
safe	code	type	check-
ing and casting.

72

 Avoid misuse of user input. The use
of user input for system calls or to
provide file parts should be avoided.
Here is a Python example of how you
can restrict access to files within a
specific directory:

 Prevent XEE.	Always disable the res-
olution of external DTDs, so that only
statically defined local DTDs are used.
It is also recommended to always val-
idate	 the	 structure	 of	 the	 XML	 docu-
ment provided by the user, using the
server's statically defined format defi-
nition DTD file as a basis.

 Example	of	a	secure	Python	XML	parser	 library: defusedxml3
[41] is	a	pure	Python	package	with	modified	subclasses	of	all	
stdlib	XML	parsers	that	prevent	any	potentially	malicious	oper-
ation.	The	use	of	this	package	is	recommended	for	any	server	
code	 that	 parses	 untrusted	 XML	 data.	 The	 package	 also	 in-
cludes	example	attacks	and	extended	documentation	on	more	
XML	vulnerabilities,	such	as	XPath	injection..

 The defusedxml	 library	prevents	XEE	attacks	because	it	does	
not	allow	 the	use	of	XML	with	<!ENTITY> declarations inside
the DTD and throws the EntitiesForbidden exception when an
entity	is	declared.	On	the	other	hand,	it	does	not	allow	any	re-
mote or local resource access in external entities or DTD and
raises the External ReferenceForbidden exception when a DTD
or entity references an external resource.

 Python example with the defusedxml
library:

 Standardisation. Use Python's native functions for the stand-
ardisation of the charset of all the information processed by
the system.

 Example: codecs library4 [42]:

3	 XML	parser	https://pypi.org/project/defusedxml/
4 Standardisation Codecs https://docs.python.org/3/library/codecs.html

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

73

 Data sanitisation. Some of the most common special character
set	languages	and	recommended	packages	for	sanitisation	are:

	 ◗ HTML/URL: html-sanitizer5 [43]

	 ◗ XML: EscapingXML6 [44]

	 ◗ JSON:	 JsonSchema7 [45] implementation	 of	 the	 JSON	
Schema specification for Python.

 Most frameworks come with sanitization functions: Flask8 [46]
and Django9 [47]

 String formatting. Python has one of the most powerful and
flexible methods for formatting strings and if not used properly,
it could end up opening up a security vulnerability in the code.
Python3 introduced f-strings10 [48] and str.format()11 [49] as a
flexible way of formatting strings and it is really very interesting.

 However, this opens a loophole for data exploitation when it
comes to user input. If the application built in Python allows
users	to	control	the	format	string,	they	can	be	misused	to	leak	
sensitive	data.	For	example:

 With	this,	sensitive	global	data	of	a	CONFIG	dictionary	can	be	
accessed via the argument.

 However, Python has a built-in string
module that can be used to fix and pre-
vent this. Using the Template class of
the string module:

 5 HTML Sanitisation https://pypi.org/project/html-sanitizer/
 6	 XML	Sanitisation	https://wiki.python.org/moin/EscapingXml
 7	 JSON	Schema	Sanitisation	https://python-jsonschema.readthedocs.io/en/latest/
 8	 Flask	Sanitisation	https://flask.palletsprojects.com/en/2.0.x/api/#flask.escape
 9	 Django	Sanitisation	https://docs.djangoproject.com/en/4.0/_modules/django/utils/html/
10	 Formatting	Chains	I	https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
11	 Chain	Formatting	II	https://docs.python.org/3/library/stdtypes.html#str.format

CCN-CERT BP/28: Recommendations on Secure Development

14. Python: Complementary indications

74

15. Checklist	
security	controls

architecture id security	control description

ARQ-01 Identify components Components that have not been
correctly identified are potential security
risks

ARQ-02 Bastioning components Ensure that the configurations are
as secure as possible: there are not
debugging options enabled, nor default
users and passwords, etc.

Ensure that only those communication
ports that are strictly necessary are open.

Status of the latest system update.

Identification of all system components:
Libraries, Modules, Frameworks,
Services, etc.
For each system component,
perform the same baseline review of
configurations and update status.

ARQ-03 Analysing risks Obtain a report of the components in
which there are vulnerabilities detected
for which there is currently no security
patch and analyse their level of risk
within the application.

ARQ-04 Monitoring updates Keep a close watch on vulnerable
components so that they are updated as
soon as possible.

ARQ-05 Alternative mitigations Conduct a study of how the security
problems created by these risk
vulnerabilities could be avoided or
mitigated by alternative security
systems.

CCN-CERT BP/28: Recommendations on Secure Development

75

authentication id security	control description

AUT-01 Hash for passwords Ensure that passwords are not stored
in a readable format, so that if the
system or resource containing the
passwords is compromised, the
malicious user is still unable to use
them.

AUT-02 Disconnect button Each page of the application has a
logout link, that the session expires
when the user logs out, and that the
session expires when a reasonable
amount of time of non-activity has
passed.

AUT-03 Do not expose credentials Never expose credentials in the URL.

AUT-04 Use POST When using forms, use POST methods
for sending information between the
client and the server.

[ARCHITECTURE] ARQ-06 Logical perimeter security By installing firewalls, IDS or similar
devices, or by segmenting the network.

ARQ-07 Securing sensitive data Ensure that data are protected by
authorisation mechanisms between
environments through physical or logical
segregation, and by backups to ensure
their availability.

ARQ-08 Programming language security Use the most recent version of the
programming language.

Use a Virtual Environment as a project
workspace if applicable according to the
programming language.

Correct import of packages according
to programming language, thoroughly
checking the security of the packages
to be installed.

ARQ-09 Disable debugging options Especially in Production to avoid
information leakage in the detailed error
messages.

ARQ-10 Development environment Use tools in the IDE that perform basic
semantic and security analysis.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

76

[AUTHENTICATION] AUT-05 Use multi-factor authentication Use multi-factor authentication to
implement multiple layers of security for
sensitive applications.

Use two-factor authentication to
the user for critical functions in
the application, such as changing
passwords or accessing particularly
sensitive resources.

AUT-06 Blocking of accounts Implement account locking after 3 failed
login attempts and a way to contact the
administrator to unlock the account.

AUT-07 Use of CAPTCHA Implement CAPTCHA to mitigate brute
force attacks on applications exposed
on the internet.

AUT-08 Prevent user enumerations Providing generic error messages in
case of authentication failure, such as
"The user and/or password provided are
not correct".

For providing different response times
in case of non-existent user or incorrect
password.

In password recovery procedures that
require entering the username.

AUT-09 Disable "autocomplete". Disable the "auto-complete" attribute of
the password field in the application, as
it is enabled by default.

AUT-10 Password complexity requirements It must have a minimum of eight
characters and a sensible maximum.
It must contain at least three of the
following characters: one upper case
letter, one lower case letter, one number,
one special character.

AUT-11 Do not store Cookie Not to persistently store the
authentication cookie on the customer's
computer, and not to use it for other
purposes such as personalisation.

AUT-12 Register access Record all accesses in a specific security
log stating the outcome of the access
attempt (whether it was successful or
unsuccessful, cancelled or blocked).

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

77

autorización id security	control description

ATZ-01 Minimal privilege Ensure the implementation of the
principle of least privilege: Users have
restricted access only to the functions
and data they really need to perform
their work normally.

ATZ-02 Roles and privileges Assign permissions and privileges
to application roles, never directly to
users. Users must have roles and their
privileges are taken from these roles.

ATZ-03 Protection by authorisation Check that access to confidential data
is protected, so that only authorised
objects or data accessible to each user
can be reached.

ATZ-04 Directory browsing disabled Verify that directory browsing is disabled,
unless it is deliberately enabled.

ATZ-05 Access control on the server Ensure that access control rules are
applied on the server side.

ATZ-06 Safe Handling of User Information Verify that all user attributes, data and
policy information used by access
controls cannot be manipulated by end-
users unless specifically authorised.

ATZ-07 Safe handling of resources Verify that there is a centralised
mechanism (including libraries that
call external authorisation services) to
protect access to each type of protected
resource.

ATZ-08 Anti-CSRF tokens The application uses strong anti-CSRF
random tokens or implements another
transaction protection mechanism.

ATZ-09 Register access control Record all operations on sensitive data
in a specific security log even if they
have been denied.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

78

session	management id security	control description

SES-01 Secure headers Implementing secure headers with
directives such as cache-control or
strict-transport	security

SES-02 Session invalidation Check that sessions are invalidated
when the user logs out.

SES-03 Session expiry Sessions must expire after a specified
time of inactivity.

SES-04 Logging out Ensure that all pages requiring
authentication have easy and
user-friendly access to the logout
functionality.

SES-05 Do not expose session ID Verify that the session ID never appears
in URLs, error messages or logs.

SES-06 New session IDs Ensure that every successful
authentication and re-authentication
generates a new session and a new
session ID, destroying the old one.

SES-07 Session Cookie Check that the session ID stored in the
cookies is defined using the HttpOnly
and Secure attributes.

Properly configure the Path attribute of
session cookies to prevent access to
other domains.

SES-08 Follow-up sessions Verify that the application keeps track
of all active sessions and allows the
user to terminate sessions selectively
or globally from their account.

In the case of high-value applications,
ensure that the user is required to close
all active sessions if the password has
just been successfully changed.

SES-09 Record session activity Record in a security log all sessions that
are created, manually closed or expired
from the client or from the server.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

79

validation	of	input	
and	output	data id security	control description

VAL-01 Validate on the server side Validations must always be performed
on the server side.

VAL-02 Validation schemes Use data validation schemes as the best
solution to validate data entry.

Failing this, use standard input
validation mechanisms provided by
technology-specific libraries.

VAL-03 Data	typification Check that structured data is strongly
typed and validated according to a
defined schema, including allowed
characters, length and pattern.

VAL-04 Data sanitisation Verify that unstructured data is sanitised
to impose generic security measures,
such as allowed characters and length,
and avoid potentially harmful characters.

Ensure that all unreliable input is properly
sanitised using a sanitisation library.

VAL-05 Accept only expected data Accept only the expected data at each
entry point of the application. Any
unexpected data must be rejected.

VAL-06 SQL injection protection Ensure that all database queries are
protected using parameterised queries
to prevent SQL injection.

VAL-07 Correct encoding of HTML variables To ensure that the application is not
susceptible to Cross-Site Scripting (XSS)
reflected, stored or DOM

VAL-08 XML parser constraints Verify that the application restricts XML
parsers to use only the most restrictive
settings possible and ensure that
dangerous functions, such as external
entity resolution, are disabled.

VAL-09 Deserialisation of data Verify that deserialisation of unreliable
data is prevented or largely protected
when deserialisation cannot be avoided.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

80

error	management id security	control description

ERR-01 Exposure of information in errors Use generic error messages that do
not give clues to end-users about any
sensitive aspects of the application.

ERR-02 Centralisation of errors Use centralised exception handling.

The application must handle errors
without relying on server error messages
displayed to users.

ERR-03 Default refusal in case of error Any access control logic that leads to an
error must deny access by default.

ERR-04 Controlled errors Analyse in detail all exceptions that may
occur due to the use of system libraries
or third-party libraries in the application,
handle them appropriately and provide a
safe exit to the application.

Use try/catch/finally to ensure shutdown
of all resources in case of error.

ERR-05 Recording errors Log all unexpected exceptions in a
specific security log.

secure	registration id security	control description

LOG-01 Do not record sensitive information Such as passwords, financial information,
credit cards, personal data, etc. In these
cases, use tokens, anonymisation of
information or encryption.

LOG-02 Validate record variables Validate the parameters of the variable
components that will make up the log
entry to avoid injections and unexpected
behaviour.

LOG-03 Precise notes Make sufficiently precise notes that
allow the user's operations and activities
to be known for safety.

LOG-04 Integrity of the register Use hash functions to ensure data
integrity of records.

LOG-05 Isolation of the security log The security register must be
independent of other registers and
have its own security protections in the
system.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

81

cryptography id security	control description

CRT-01 Encryption of sensitive information All sensitive information of an
organisation must be stored in an
unreadable (encrypted) form to ensure
its confidentiality.

CRT-02 Secure random generator Check that all random numbers, random
file names, random GUIDs and random
strings are generated by a random
number generator approved by the
cryptographic module.

Check that random numbers are
created with an appropriate level of
entropy, even when the application is
under high load.

CRT-03 Key management policy Check that there is an explicit policy on
the handling of cryptographic keys (such
as generation, distribution, revocation
and deprecation).

Check that the lifecycle of cryptographic
keys is correctly implemented.

CRT-04 Release of sensitive information Ensure that confidential passwords or
critical information residing in memory
are overwritten with zeros as soon as
they are no longer used to mitigate
memory dump attacks.

CRT-05 Use of robust algorithms Check that obsolete or weak
cryptographic algorithms such as the
symmetric key DES algorithm or hash
functions such as MD5 or SHA-1 are
not used due to the impossibility to
guarantee confidentiality.

Use existing cryptographic libraries
and in any case use custom or user-
created cryptographic algorithms or
implementations.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

82

secure	files id security	control description

FIL-01 Download authorisation Authenticate and authorise the user
before uploading or downloading any
files, especially if the data is sensitive.

FIL-02 Do not allow renaming Do not use user-supplied input to name
files or directories.

FIL-03 Validate MIME types Validate content types not only by
extension, but also check MIME types to
verify files.

Do not allow executable files to be
uploaded to the application.

FIL-04 Limit	file	size Limit file sizes to the minimum that
the server can handle without causing
availability problems and impacting
application functionality.

FIL-05 Scanning	files Before processing the files to the server,
an anti-virus scanner checks the files for
malware or viruses.

FIL-06 Directory privileges Disable execution privileges on
directories where users can upload files.

Do not use absolute paths when
providing a download link to the user.

FIL-07 Secure	file	names Do not store files with their names
sequentially.

Do not use sensitive information for file
naming.

FIL-08 Read only Ensure that the access control is set to
read-only.

FIL-09 File limit Limit the number of files uploaded by
the user.

FIL-10 File integrity Store hashes of uploaded files to ensure
their integrity.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

83

transaction	
security id security	control description

TRN-01 Payment Bypass Protection The authorisation and confirmation of
a purchase must be done on the server
side.

It is necessary to validate that the
signatures used are correct during
the communication process with the
payment gateway.

Validate that the price is correctly set on
the server side.

Validate that payments are not reused.

The payment server must always check
at which stage of the transaction you
are in.

TRN-02 Transaction expiry time Include a relatively short authorisation
expiry time for each transaction.

TRN-03 Transaction traceability Ensure traceability of transactions.

TRN-04 Encrypt communication between
transactions

Encrypt communications with robust
asymmetric algorithms.

TRN-05 Record transaction activity Detailed recording of all transactions
with anonymisation of sensitive
information.

communications	
security id security	control description

COM-01 Always encrypt communication channels TLS, a cryptographic protocol for
encrypting communication channels.

WebSocket, a technology that provides
a bi-directional communication channel
over the same TCP socket.

COM-02 Use strong cryptography Strong enough to make any attempt at
deciphering futile.

COM-03 Use secure protocols Uses security protocols: such as HTTPS,
or FTPS

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

84

data	protection id security	control description

DAT-01 Data protection policy Check that an explicit data protection
policy is in place.

DAT-02 Sending sensitive data Ensure that all sensitive data is sent to
the server in the HTTP message body
or headers.

Check that the communication channels
used for sending confidential data are
secure.

Check that the application sets sufficient
headers against caching.

DAT-03 Securely stored data Check that stored sensitive data is
encrypted with strong encryption
algorithms.

Check that backup policies are in place
for data availability.

DAT-04 Release of sensitive data Ensure that sensitive information stored
in memory is overwritten with zeros as
soon as it is not needed, to mitigate
memory dump attacks.

DAT-05 Deletion of data There is a policy of secure deletion of
data when assets have reached the end
of their life cycle.

CCN-CERT BP/28: Recommendations on Secure Development

15. Checklist security controls

85

16. Security	vulnera-
bilities and controls

vulnerability security	control

Insecure Communication

Enumeration of Usernames Authentication

Weak Password

Cross-Site Request Forgery - Cross-Site
Request Forgery (CSRF)

AuthorisationIdentification and Authentication Failures

Direct Access to Objects

Access Control

Cross-Site Scripting - Cross-Site Scripting
(XSS)

Data Validation

SQL Injection

Buffer overflow

Falsification of Records

Dynamic SQL

Open Redirect Vulnerability

Output Coding

Disclosure of Information

Weak Session Management
Session Management

Forms Cache

Information Disclosure Error Handling

Information Disclosure
RegisterRegistration does not exist for Critical

Functions

Storage of Sensitive Information in
Unencrypted Text Cryptography
Weak Cryptography

Insecure File Upload
Secure File Management

Information Disclosure

It is important to be aware of the most
common vulnerabilities located in the
code	 in	order	 to	know	how	they	should	
be addressed. These vulnerabilities have
been cross-referenced with the security
controls in the previous chapters

CCN-CERT BP/28: Recommendations on Secure Development

86

17. Security	
measures	and	security	
controls

security	measures safe	development	guide

op.exp Exploitation Architecture

op.exp.4.1, op.exp.4.2, op.exp.7.r4.1 security recommendations

mp.com Protection of communications

mp.com.1.1, mp.com.4

op.acc Access control Authentication

op.acc.5.r3.2, op.acc.5.8, op.acc.5.r1.2, op.acc.5.r6.1 security recommendations

mp.sw Protection of applications Authorisation

mp.sw.1.r1.1 security recommendations

mp.s Protection of services

mp.s.2.1

op.pl Planning

op.pl.2.4

op.mon System monitoring

op.mon.1.r2.1

op.acc Access control

op.acc.4.1, op.acc.6.r5.1

CCN-CERT BP/28: Recommendations on Secure Development

87

mp.eq Protection of equipment Session Management

mp.eq.2.r1.1 recomendaciones de seguridad

op.pl Data validation Validación de Parámetro

op.pl.2.r3.1 recomendaciones de seguridad

mp.s Protection of services

mp.s.2.3

op.exp Exploitation Registro

op.exp.5.1, op.exp.7.r2.1, op.exp.8.2 recomendaciones de seguridad

mp.s Protection of services

mp.s.3.r1.1

op.acc Access control

op.acc.6.r9.2

mp.si Protection of information media Criptografía

mp.si.2.1 recomendaciones de seguridad

op.exp Exploitation

op.exp.10

op.exp Exploitation Secure File Management

op.exp.6.3 recomendaciones de seguridad

mp.com Protection of communications Communications Security

mp.com.2.r5.1 recomendaciones de seguridad

mp.info Protection of information Data Protection

mp.info.1.1, mp.info.2 recomendaciones de seguridad

CCN-CERT BP/28: Recommendations on Secure Development

17. Security measures and security controls

88

18. Glossary

OWASP	(Open	Web	Application	Security	Project): is an open source
project	dedicated	to	identifying	and	combating	the	causes	that	make	
software	insecure.	The	OWASP	Foundation	is	a	non-profit	organisation	
that	supports	and	manages	the	OWASP	projects	and	infrastructure.

The	OWASP	community	is	made	up	of	companies,	educational	organ-
isations and individuals from around the world. Together they form a
computer	security	community	that	works	to	create	articles,	methodol-
ogies, documentation, tools and technologies that are released and can
be used free of charge by anyone.

Cookie:	a	small	file	sent	by	a	website	and	stored	in	the	user's	browser,	
so that the website can consult the browser's previous activity. In this
way,	it	is	possible	to	identify	the	user	visiting	a	website	and	to	keep	a	
record of their activity on the website.

CSRF	(Cross	Site	Request	Forgery):	is	a	cross-site	request	forgery	vul-
nerability.	It	involves	tricking	a	legitimate	user	into	executing	requests	
or	actions	without	their	consent,	without	knowing	what	they	are	doing.

MFA (Multi-Factor Authentication): is a method of access control in
which a user is granted access to the system only after he/she provides
two or more different proofs that he/she is who he/she claims to be.

XEE/JEE	(Xml/Json	External	Entity): is a code injection vulnerability in
an	application	that	parses	XML/Json	data.

DTD	(Document	Type	Definition):	is	a	definition	in	an	SGML	or	XML	doc-
ument,	which	specifies	restrictions	on	the	structure	and	syntax	of	the	
document.

CWE: is a community-developed list of types of software and hardware
weaknesses.	It	serves	as	a	common	language,	a	yardstick	for	securi-
ty	tools,	and	as	a	baseline	for	weakness	identification,	mitigation	and	
prevention efforts.

CCN-CERT BP/28: Recommendations on Secure Development

89

19. References

[1] "Design	Patterns,"	[Online].	Available:
https://refactoring.guru/es/design-patterns

[2] "OWASP:	Design	Secure	Web	Applications,"	[Online].	

Available: https://owasp.org/www-pdf-archive/APAC13_

Ashish_Rao.pdf

[3] Ámbitos de la Seguridad Nacional: Protección de

Infraestructuras	Críticas,"	[Online].	Available: file:///Users/

lagor/Downloads/BOE-400_Ambitos_de_la_Seguridad_

Nacional_Proteccion_de_Infraestructuras_Criticas.pdf

[4] "Java	Secure	Authentication,"	[Online].	Available:
https://docs.oracle.com/javaee/5/tutorial/doc/bncbe.

html#bncbn

[5] "Python:	Library	for	implementing	OTP,"	[Online].	Available:

https://pypi.org/project/pyotp/

[6] "Java:	Secure	Authorization,"	[Online].	Available:
https://docs.oracle.com/en/java/javase/19/security/

java-authentication-and-authorization-service-jaas1.html

[7] "Python:	Simple	authorization	secure	library,"	[Online].	

Available: https://pypi.org/project/python-authorization/

[8] "OWASP:	Secure	Session	Management,"	[Online].	Available:

https://cheatsheetseries.owasp.org/cheatsheets/Session_

Management_Cheat_Sheet.html

[9] "Java:	SpringSession	Framework,"	[Online].	Available:

https://www.baeldung.com/spring-session

[10] "OWASP:	Parameter	Validation,"	[Online].	Available:

 https://cheatsheetseries.owasp.org/cheatsheets/Input_

Validation_Cheat_Sheet.html

[11] "OWASP:	Data	Validation	-	ESAPI	Library,"	[Online].	

Available: https://owasp.org/www-project-enterprise-

security-api/

[12] "Validating	Forms	in	Javascript,"	[Online].	Available:

https://www.tutorialspoint.com/javascript_form_validation_

web_application/index.asp

[13] "Java:	Spring	Boot	Validation,"	[Online].	Available:
https://www.baeldung.com/spring-boot-bean-validation

[14] "XSS	Prevention,"	[Online].	Available:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_
Site_Scripting_Prevention_Cheat_Sheet.html

[15] "Colander	Validation,"	[Online].	Available:
https://pypi.org/project/colander/

[16] "Cerberus	Validation,"	[Online].	Available:
https://docs.python-cerberus.org/en/stable/

[17] "Validation	Schematics,"	[Online].	Available:
https://schematics.readthedocs.io/en/latest/

[18] "Schema	Validation,"	[Online].	Available:
https://pypi.org/project/schema/

[19] "JSON	Schema	Validation,"	[Online].	Available:
https://pypi.org/project/jsonschema/

[20] "Java:	Try	-	Catch	-	Finally,"	[Online].	Available:
https://www.w3schools.com/java/java_try_catch.asp

[21] "Java:	Exception	Handling,"	[Online].	Available:
https://www.baeldung.com/java-exceptions

[22] "Error	Handling	Strategies,"	[Online].	Available:
https://dzone.com/articles/error-handling-strategies

[23] "Python:	Errors	and	Exceptions,"	[Online].	Available:
https://docs.python.org/es/3/tutorial/errors.html#errors-
and-exceptions

[24] "Security Log: Best Practices for Logging and
Management,"	[Online].	Available:
https://www.dnsstuff.com/security-log-best-practices

[25] "java:	Logging,"	[Online].	Available:
https://docs.oracle.com/javase/7/docs/technotes/guides/
logging/index.html

[26] "OWASP:	Secure	Cryptography	in	Java,"	[Online].	
Available: https://www.owasp.org/index.php/Using_the_
Java_Cryptographic_Extensions

CCN-CERT BP/28: Recommendations on Secure Development

90

[27] "Scrypt	key	derivation	function,"	[Online].	Available:
https://www.tarsnap.com/scrypt.html

[28] "Python:	Cryptographic	functions	bcrypt,"	[Online].	
Available: https://pypi.org/project/bcrypt/

[29] "Apache	Server:	Configuration	Directives,"	[Online].	
Available: https://httpd.apache.org/docs/2.4/mod/core.
html#limitrequestbody

[30] "Java:	Canonisation	of	Path,"	[Online].	Available:
https://docs.oracle.com/en/java/javase/14/docs/api/java.
base/java/io/File.html#getCanonicalPath()

[31] "PHP:	Canonisation	of	Path,"	[Online].	Available:
https://www.php.net/manual/es/function.realpath.php

[32] "Python:	Mapping	files	to	their	MimeTypes,"	[Online].	
Available: https://docs.python.org/3/library/mimetypes.html

[33] "WordPress: Plugin to avoid Payment ByPass
vulnerability," [Online].	Available:
https://www.acunetix.com/vulnerabilities/web/wordpress-
plugin-nab-transact-security-bypass-2-1-0/

[34] "SSL/TLS	Algorithms,"	[Online].	Available:
https://docs.oracle.com/en/java/javase/15/docs/specs/
security/standard-names.html#sslcontext-algorithms

[35] "Java:	HttpClient	with	SSL,"	[Online].	Available:
https://www.baeldung.com/java-httpclient-ssl

[36] "Python:	SSL/TLS,"	[Online].	Available:
https://docs.python.org/3/library/ssl.html

[37] "Python:	WebSockets,"	[Online].	Available:
https://pypi.org/project/websockets/

[38] "Virtual	Environment,"	[Online].	Available:
https://docs.python.org/3/library/venv.html

[39] "Media	Types,"	[Online].	Available:
https://www.iana.org/assignments/media-types/media-
types.xhtml

[40] "CWE-602,"	[Online].	Available:
https://cwe.mitre.org/data/definitions/602.html

[41] "XML	parser,"	[Online].	Available:
https://pypi.org/project/defusedxml/

[42] "Codecs	Standardisation,"	[Online].	Available:
https://docs.python.org/3/library/codecs.html

[43] "HTML	Sanitization,"	[Online].	Available:
https://pypi.org/project/html-sanitizer/

[44] "XML	Sanitisation,"	[Online].	Available:
https://wiki.python.org/moin/EscapingXml

[45] "Sanitisation	JSON	Schema,"	[Online].	Available:
https://python-jsonschema.readthedocs.io/en/latest/

[46] "Flask	Sanitization,"	[Online].	Available:
https://flask.palletsprojects.com/en/2.0.x/api/#flask.escape

[47] "Django	Sanitisation,"	[Online].	Available:
https://docs.djangoproject.com/en/4.0/_modules/django/
utils/html/

[48] "String	Formatting	I,"	[Online].	Available:
https://docs.python.org/3/tutorial/inputoutput.
html#formatted-string-literals

[49] "String	Formatting	II,"	[Online].	Available:
https://docs.python.org/3/library/stdtypes.html#str.format

CCN-CERT BP/28: Recommendations on Secure Development

19. References

91

principios	de	desarrollo	seguro checklist	controles	de	seguridad

Minimum Privilege An actor must have the minimum level of
permissions on system resources for the minimum
possible time. Access to resources should be
denied by default.

Authorisation System To split an application into an authorisation system
from the outset, preventing any unauthorised agent
from accessing the entire application. E.g., RBAC
system.

Separation of
Responsibilities

Any complex or sensitive task should require the
involvement of more than one actor with different
role levels. This prevents a single actor from
compromising the whole system.

Parameterised Use of parameterised queries for any application
access to the database.

Defence in Depth Establish multiple layered security mechanisms,
with different levels of complexity and control
factors. The aim is to avoid the "Single Point of
Failure".

Protection of Forms Protection of forms where there are parameters
whose value can be modified by users. This
protection consists of properly encrypting the
data output, filtering potentially dangerous meta-
characters in vulnerable entries and enforcing form
data filtering policies.

Failure Sure In the event of a failure, the system must be
returned to a secure state, minimising compromise
to the confidentiality, integrity or availability of the
system.

Validation of Inputs Validation of any input area and in an efficient
way including data from the internet, customers,
suppliers and regulators.

Economics of
Mechanisms

The implementation of a system's functionalities
and security controls should be as simple as
possible. Simpler means that fewer things can
go wrong.

Secure Transaction
Method

• The authorisation and confirmation of a
purchase must be done on the server side.

• Validate that the signatures used are correct
during the communication process with the
payment gateway.

• Validate that the price is correctly set on the
server side.

• Validate that payments are not reused.
• The payment server must always check at

which stage of the transaction you are in.
• The authorisation of each transaction should

have a relatively short expiry period.

Full Mediation Any request for access to system resources
must be validated so that authentication and
authorisation controls cannot be bypassed.

Use of MFA Implementation of a Multiple Factor Authentication
for sensitive data handling applications exposed to
the internet and privileged user access.

annex	a. Basic cheatsheet

CCN-CERT BP/28: Recommendations on Secure Development

92

Open Design Shared resources between different users of the
system should be restricted to a minimum, for
confidentiality and concurrency reasons.

Protection of Sensitive
Data

Perform a series of actions from the beginning of
the development phase of an application, such as
the following:
• Identify the data to be processed that are

sensitive with respect to regulatory privacy
requirements.

• Apply controls such as encryption in transit or
at rest.

• Do not store sensitive data unnecessarily.
• Disable caching of sensitive data.
• Have encrypted data at rest.
• All data traffic must be encrypted with methods

such as TLS.
• Store passwords using strong hashing

algorithms with a duty factor that slows down
possible password cracking.

Least Common
Mechanism

The impact of security controls on the usability of
the system should be considered. Ideally, security
controls should be transparent to the user.

CSRF protections Include default implementation of CSRF
protections in the framework in use.

Psychological
Acceptability

The main point of compromise of a system must
be identified and the necessary security controls
implemented to protect it. A system is only as
secure as its weakest link.

Prevent XEE/JEE Disable resolution of external DTDs and validate
XML document structure.

Weakest Link It is advisable to encourage the reuse of well-
proven components and established solutions in
the system architecture.

Avoid use of certain
inputs

Avoid using user input for system calls or to
provide file parts.

Leveraging Existing
Components

Es recomendable fomentar la reutilización
de componentes bien probados y soluciones
consolidadas en la arquitectura del sistema.

Use updated version of
the language

Use the most recent version of the

For more information on the Secure Development Principles see CCN-CERT -
Workshop - Practical Approach to Secure Application Development v 1.0.

Use Virtual
Environment

Use of a Virtual Environment as a project
workspace if applicable according to the
programming language.

Correct import of
packages

Perform import path according to programming
language.

Use Formatting Secure
Chains

Formatting user input strings in a way that does
not allow control of the format string and prevents
filtering of sensitive data.

Secure Use of HTTP
Requests

Handling HTTP requests securely by avoiding
requests to exploited sources that may return
exploited code in the headers or in the body of the
response.

Installed and imported
packages Secure

Thorough security check of the packages to be
installed.

Secure Data
Deserialisation

Make use of deserialisation library functions that
prevent attack vectors.

Keeping Vulnerabilities
Up to Date

Maintain up-to-date Open-Source Vulnerabilities in
installed and imported Packages.

Disable Debugging in
Production

Set Production Debugging to False to avoid
information leakage in the detailed error
messages.

Code scanning Use tools in the IDE that perform semantic
analysis.

CCN-CERT BP/28: Recommendations on Secure Development

annex a. Basic cheatsheet

93

principles	
of	secure	
development

checklist	security	
controls reference	entities security	controls	mapping

Minimum Privilege Authorisation System ISO Promotes safety, clarity and
reliability of products and for
various industries by publishing
globally applicable standards.

Insecure
Communication

Authentication

Separation of
Responsibilities

Parameterised NIST Physical Sciences Laboratory
and a non-regulatory agency
of the US Department of
Commerce.

Enumeration of
Usernames

Defence in Depth Protection of Forms OWASP Online community that provides
free articles, methodologies,
documentation, tools and
technologies in the field of web
application security.

Weak Password

Failure Sure Validation of Inputs MITRE Organisation that provides
systems engineering, research,
development and IT support to
the US government.

Cross-Site Request
Forgery Cross-Site
Request Forgery
(CSRF)

Authorisation

Economics of
Mechanisms

Secure Transaction Method proactive	
controls

For more information on the
Secure Development Principles
see CCN-CERT - Workshop -
Practical Approach to Secure
Application Development v 1.0

Identification	and	
Authentication
Failure

Full Mediation Use of MFA Define	security	
requirements

Direct Access to
Objects

Open Design Protection of Sensitive Data Leveraging security
frameworks and
libraries

Access Control

Least Common
Mechanism

CSRF protections Secure database
access

Cross Site Scripting
(XSS) Cross Site
Scripting (XSS)

Data Validation

Psychological
Acceptability

Prevent XEE/JEE Coding and
escaping data

SQL Injection

Weakest Link Avoid use of certain inputs Validate all entries Buffer	overflow

Leveraging Existing
Components

Use updated version of the
language

Implementing
digital identity

Falsification	of	
Records

Use Virtual Environment Strengthening
access controls

Dynamic SQL

CCN-CERT BP/28: Recommendations on Secure Development

annex	b. Advanced cheatsheet

94

Correct import of packages Protect data
continuously

Open Redirect
Vulnerability

Use Formatting Secure
Chains

Implement security
monitoring

Output Coding

Secure Use of HTTP
Requests

Handle all errors
and exceptions

Disclosure of
information

Installed and imported
packages Secure

Weak Session
Management

Session
Management

Secure Data Deserialisation Forms Cache

Keeping Vulnerabilities
Up-to-Date

Information
Disclosure

Error Handling

Disable Debugging in
Production

Information
Disclosure

Register

Code scanning Registration does
not exist for Critical
Functions

Sensitive
Information Storage
in Unencrypted Text

Cryptography

Weak Cryptography

Insecure File Upload Secure File
ManagementInformation

Disclosure

CCN-CERT BP/28: Recommendations on Secure Development

annex b. Advanced cheatsheet

www.ccn.cni.es

www.ccn-cert.cni.es

oc.ccn.cni.es

		2024-02-12T11:29:10+0100
	CENTRO CRIPTOLOGICO NACIONAL

